Jean-François Ternon
Informations
EMAIL : jean-francois.ternon ird.fr
Tel. : (+33) 04 99 57 32 17
ADRESSE :
Avenue Jean Monnet - CS 30171 - 34203 - Sète - FR
Institut : /BOUCLE_groupemots>
IRD
GRADE : /BOUCLE_groupemots>
CR1
LIEU GEOGRAPHIQUE : /BOUCLE_groupemots>
SETE
Gouvernance : /BOUCLE_groupemots>
Conseil d’unité - Suppléant(e)s membres élus
Thèmes de recherche : /BOUCLE_groupemots>
Individus, populations et habitats
Pôles communs : /BOUCLE_groupemots>
Observatoires
//B_mots>
Publications
2020 |
|
Annasawmy, P., et al. "Stable isotope patterns of mesopelagic communities over two shallow seamounts of the south-western Indian Ocean." Deep-Sea Res. Part II-Top. Stud. Oceanogr.. 176 (2020): 104804.
Résumé: The stable carbon (delta C-13) and nitrogen (delta N-15) isotope values of soft tissues of micronekton (crustaceans, squid, mesopelagic fish) and zooplankton were measured from organisms collected on the RV Antea at two seamounts located in the south-western Indian Ocean: La Perouse (summit depth similar to 60 m) and “MAD-Ridge” (thus named in this study; summit depth similar to 240 m). Surface particulate organic matter (POM-Surf) showed higher delta C-13 at the more productive MAD-Ridge than at the oligotrophic La Perouse seamount. Particulate organic matter and zooplankton were depleted in N-15 at La Pemuse pinnacle compared with MAD-Ridge. Gelatinous organisms and crustaceans occupied the lowest and intermediate tmphic levels (TL similar to 2 and 3 respectively) at both seamounts. Mesopelagic fish and smaller-sized squid sampled at both seamounts occupied TL similar to 3 to 4, whereas the large nektonic squid, Ommastrephes bartramii, collected at MAD-Ridge only, exhibited a TL of similar to 5. The delta N-15 values of common open-water mesopelagic taxa were strongly influenced by specimen size and feeding habits at both seamounts, with an increase in delta N-15 values with increasing size. Carnivorous fish species sampled exclusively over the seamounts' flanks and summits exhibited TL values of similar to 4, irrespective of their wide size ranges. The work could not demonstrate any differences in delta C-13 values of mesopelagic fish between the seamounts and the surrounding oceanic areas. The study segregated clusters of mesopelagic organisms according to their delta C-13 and delta N-15 values, with variations in stable isotope values reflecting a complex range of processes possibly linked to productivity as well as biological and ecological traits of the species (size and feeding mode).
|
![]() ![]() |
Annasawmy, P., et al. "Micronekton distribution as influenced by mesoscale eddies, Madagascar shelf and shallow seamounts in the south-western Indian Ocean: an acoustic approach." Deep-Sea Res. Part II-Top. Stud. Oceanogr.. 176 (2020): 104812.
Résumé: An investigation of the vertical and horizontal distributions of micronekton, as influenced by mesoscale eddies, the Madagascar shelf and shallow seamounts, was undertaken using acoustic data collected during two research cruises at an unnamed pinnacle (summit depth similar to 240 m) thereafter named “MAD-Ridge”, and at La Perouse seamount (similar to 60 m) in the south-western Indian Ocean. MAD-Ridge is located to the south of Madagascar, in an “eddy corridor”, known both for its high mesoscale activity and high primary productivity. In contrast, La Perouse is located on the outskirts of the Indian South Subtropical Gyre (ISSG) province, characterised by low mesoscale activity and low primary productivity. During the MAD-Ridge cruise, a dipole was located in the vicinity of the seamount, with the anticyclone being almost stationary on the pinnacle. Total micronekton acoustic densities were greater at MAD-Ridge than at La Perouse. Micronekton acoustic densities of the total water column were lower within the anticyclone than within the cyclone during MAD-Ridge. Micronekton followed the usual diel vertical migration (DVM) pattern, except within the cyclone during MAD-Ridge where greater acoustic densities were recorded in the daytime surface layer. The backscatter intensities were stronger at the 38 kHz than at the 70 and 120 kHz frequencies in the daytime surface layer at MAD-Ridge cyclonic stations. These backscatter intensities likely correspond to gas-filled swimbladders of epi- and mesopelagic fish actively swimming and feeding within the cyclone or gelatinous organisms with gas inclusions. Our findings evidenced that the distributions of micronekton and DVM patterns are complex and are influenced significantly by physical processes within mesoscale eddies. The mesoscale eddies' effects were dominant over any potential seamount effects at the highly dynamic environment prevailing at MAD-Ridge during the cruise. No significant increase in total micronekton acoustic densities was observed over either seamount, but dense aggregations of biological scatterers were observed on their summits during both day and night.
Mots-Clés: biological production; circulation; community composition; deep-scattering layer; diel vertical migration; Diel vertical migration; dynamics; Madagascar shelf; mesopelagic fish; Mesoscale eddies; Micronekton; mozambique channel; Multi-frequency; myctophid fishes; Seamount; South-western indian ocean; zooplankton
|
![]() ![]() |
Marsac, F., et al. "Seamounts, plateaus and governance issues in the southwestern Indian Ocean, with emphasis on fisheries management and marine conservation, using the Walters Shoal as a case study for implementing a protection framework." Deep Sea Research Part II: Topical Studies in Oceanography. 176 (2020): 104715.
Résumé: There is a growing interest in the management of seamounts of the Southwestern Indian Ocean (SWIO) both in waters under national jurisdictions and in the Areas Beyond National Jurisdiction (ABNJ). New scientific knowledge has been gathered through various oceanographic cruises during the past decade, and new agreements are under consideration globally to promote conservation and sustainable use of the biodiversity in the ABNJ, where the deep sea ecosystems associated with seamounts are a growing matter of concern. SWIO seamounts have attracted the interests of fishers since the 1960s, and contracts for mining exploration have been granted recently. Seamounts are known to shelter rich, fragile and poorly resilient ecosystems whose important ecological functions are threatened by various anthropogenic pressures. Whereas many seamounts and shoals are located in national waters, many others fall in the ABNJ, with no current legal status per se. To ensure conservation of their habitats and biodiversity, it is essential that protection measures are instigated under an internationally recognized legal and institutional framework. In this paper, we review the current state of such a framework relevant to seamounts, with emphasis on fisheries and conservation in the SWIO. An emblematic seamount, the Walters Shoal, is selected as a case study to discuss how it could become a fully-protected space in the ABNJ. As a large part of the SWIO is under the mandate of the Nairobi Convention (as a Regional Sea under the auspices of UNEP), guidelines are proposed to encourage dedicated seamount governance within the framework of this Convention.
|
![]() ![]() |
Noyon, M., et al. "Comparison of mesozooplankton communities at three shallow seamounts in the South West Indian Ocean." Deep-Sea Res. Part II-Top. Stud. Oceanogr.. 176 (2020): 104759.
Résumé: Seamounts are recognised as hotspots of biodiversity, attracting large numbers of top predators, but the underlying mechanisms are still unclear. We studied mesozooplankton abundance and size distribution at three shallow seamounts (60 m, 240 m and 18 m deep) in the South West Indian Ocean, along a latitudinal gradient (19 degrees S, 27 degrees S and 33 degrees S). Samples were analysed using a ZooScan, allowing the use of a size-based approach. Differences were observed between seamount areas, but overall zooplankton communities did not seem to be affected by the changes in topography. Only in the lee of La Perouse seamount was the zooplankton community slightly more concentrated than upstream, suggesting that zooplankton were flushed downstream of the seamount. The southernmost and shallowest seamount, Walters Shoal, had low abundance and its size spectrum differed greatly from the two other seamounts further north. These differences were attributed to seasonality and mesozooplankton population dynamics, whereas the other two seamounts exhibited a more “typical” oligotrophic pelagic ecosystem, at equilibrium and dominated by small organisms. At the time of sampling, the unnamed seamount south of Madagascar was influenced by a mesoscale dipole that impacted the zooplankton distribution, potentially masking any seamount effect. The normalised biomass size spectrum approach contributed to a better understanding of the ecosystem dynamics (i.e. equilibrium vs. non-steady state) but revealed little variability within a stable oligotrophic environment.
|
![]() ![]() |
Roberts, M. J., and J. - F. Ternon. "The MADRidge project – a major contribution to IIOE2-WIOURI focussing on three shallow seamounts and their pelagic ecosystems in the vicinity of the Madagascar Ridge." Deep-Sea Res. Part II-Top. Stud. Oceanogr.. 176 (2020): 104817. |
![]() ![]() |
Roberts, M. J., et al. "The MADRidge project: Bio-physical coupling around three shallow seamounts in the South West Indian Ocean." Deep-Sea Res. Part II-Top. Stud. Oceanogr.. 176 (2020): 104813.
Résumé: Compared with other ocean basins, little is known scientifically about the seamounts in the Indian Ocean. Nonetheless, fishers have plundered these fragile ecosystems for decades, and now mining is becoming a reality. We introduce a multidisciplinary project referred to as MAD-Ridge that recently focused on three shallow seamounts in the South West Indian Ocean between 19 degrees S and 34 degrees S. The larger Walters Shoal (summit at 18 m) discovered in 1963 occupies the southern part of the Madagascar Ridge and has long received attention from the fishing industry, and only recently by scientists. In contrast, nothing is known of the northern region of the ridge, which is characterised by a prominent, steep-sided seamount that has a flat circular summit at 240 m and width of similar to 20 km. This seamount is some 200 km south of Madagascar and unnamed; it is referred to here as the MAD-Ridge seamount. MAD-Ridge is the shallowest of a constellation of five deeper (>1200 m) seamounts on that part of the ridge, all within the EEZ of Madagascar. It lies in a highly dynamic region at the end of the East Madagascar Current, where mesoscale eddies are produced continuously, typically as dipoles. The Madagascar Ridge appears to be an area of great productivity, as suggested by the foraging behaviour of some tropical seabirds during chick-rearing and a longline fishery that operates there. The third seamount, La Perouse, is located between Reunion Island and Madagascar. With a summit 60 m below the sea surface, La Perouse is distinct from MAD-Ridge and Walters Shoal; it is a solitary pinnacle surrounded by deep abyssal plains and positioned in an oligotrophic region with low mesoscale activities. The overall aim of the MAD-Ridge project was to examine the flow structures induced by the abrupt topographies, and to evaluate whether biological responses could be detected that better explain the observed increased in fish and top predator biomasses. The MAD-Ridge project comprised a multidisciplinary team of senior and early career scientists, along with postgraduate students from France, South Africa, Mauritius and Madagascar. The investigation was based around three cruises using the French vessels RV Antea (35 m) and RV Marion Dufresne (120 m) in September 2016 (La Perouse), November-December 2016 (MAD-Ridge) and May 2017 (Walters Shoal). This manuscript presents the rationale for the MAD-Ridge project, the background, a description of the research approach including the cruises, and a synopsis of the results gathered in the papers published in this Special Issue.
|
![]() ![]() |
Vianello, P., et al. "Observation of a mesoscale eddy dipole on the northern Madagascar Ridge: Consequences for the circulation and hydrography in the vicinity of a seamount." Deep-Sea Res. Part II-Top. Stud. Oceanogr.. 176 (2020): 104815.
Résumé: Based on satellite and in situ data, the dynamic characteristics and vertical structure of a surface intensified mesoscale eddy dipole recently expelled from the South East Madagascar Current (SEMC) is described for the first time. The dipole was surveyed 250 nautical miles south of Madagascar between 14 and 23 November 2016, during west-east and south-north transects carried out over the northern Madagascar Ridge. The dipole consisted of two counter-rotating vortices of similar size (100 km) and intensity (0.7 f), and an intense southwestward jet (150 cm s(-1)) in the frontal region between the two eddies. The cyclonic eddy was lying on the western side of the anticyclonic eddy. With azimuthal velocities reaching 100 cm s(-1) at the surface and decreasing slowly with depth (40 cm s(-1) at -600 m), this dipole was defined as a highly non-linear (Ro similar to 0.7) isolated eddy-type structure (c(beta) similar to 11 cm s(-1) and U/c(beta) similar to 0.7) capable of trapping and advecting water masses over large distances. The enhanced concentration of chlorophyll-a found in the cyclone relative to the anticyclone could be tracked back to the spin-up phase of the two eddies and attributed to eddy-pumping. The eddy cores were located above the pycnocline (1026.4 kg m(-3)), within the upper 600 m, and consisted of varieties of Subtropical Underwater (STUW) found within the SEMC. The STUW found in the anticyclone was more saline and oxygenated than in the cyclone, highlighting mixing with the inshore shelf waters from the southeastern coastal upwelling cell off Madagascar. Observations suggest that the dipole interacted strongly with the chaotic bathymetry of the region, characterized by a group of five seamounts lying between -240 m and -1200 m. The bathymetry blocked its westward advection, trapping it in the vicinity of one shallow seamount for more than 4 weeks, so enhancing the role of the eddy-induced velocities in stirring the surrounding water masses. Squeezed between the southern Madagascan shelf and the northern flank of the anticyclone, two filament-like dynamic features with very different water-mass properties could be observed on the south-north transect: i) one filament highly concentrated in chlorophyll-a demonstrating the capacity of the eddy to export shelf water offshore; ii) intrusions of southern-type STUW generally found south of the South Indian Counter Current (SICC) recirculating on the external flanks of the anticyclone. Although the observed circulation and hydmgraphy were largely constrained by the presence of the mesoscale eddy dipole, unmistakable fine-scale dynamics were also observed in the vicinity of the MAD-Ridge seamount, superimposed onto the mesoscale eddy flow.
|
![]() ![]() |
Vianello, P., et al. "Ocean currents and gradients of surface layer properties in the vicinity of the Madagascar Ridge (including seamounts) in the South West Indian Ocean." Deep-Sea Res. Part II-Top. Stud. Oceanogr.. 176 (2020): 104816.
Résumé: This work is part of the MADRidge Project special issue which aims to describe pelagic ecosystems in the vicinity of three prominent shallow seamounts in the South West Indian Ocean: one here named MAD-Ridge (240 m below the surface) plus Walters Shoal (18 m) on the Madagascar Ridge, and La Perouse (60 m) on the abyssal plain east of Madagascar. The three span latitudes 20 degrees S and 33 degrees S, some 1500 km. The study provides the background oceanography for the once-off, multidisciplinary snapshot cruise studies around the seamounts. As life on seamounts is determined by factors such as summit depth, proximity to the light layers of the ocean, and the ambient circulation, a first description of regional spatial-field climatologies (16-22 years) and monthly along-ridge gradients of surface wind (driving force), water column properties of sea surface temperature, mixed layer depth, chlorophyll-a and eddy kinetic energy, plus ocean currents is provided. Being relevant to many applications in the study domain, these properties in particular reveal contrasting environments along the Madagascar Ridge and between the three seamounts that should drive biological differences. Relative to the other two seamounts, MAD-Ridge is in the more extreme situation, being at the end of the East Madagascar Current, where it experiences sturdy, albeit variable, currents and the frequent passing of mesoscale eddies.
|
![]() ![]() |
Vieira de Assuncao, R., et al. "3D characterisation of the thermohaline structure in the southwestern tropical Atlantic derived from functional data analysis of in situ profiles." Prog. Oceanogr.. 187 (2020): 102399.
Résumé: The dynamic of the thermohaline structure of the upper ocean, which depends on ocean-atmosphere interactions, drives most near surface oceanic processes, including the control of gases and heat fluxes, and nutrient availability in the photic layer. The thermohaline structure of the southwestern tropical Atlantic (SWTA), a key region for diagnosing variation of the Atlantic Meridional Overturning Circulation, has prime impact on global climate. Characterising the thermohaline structure is typically based on the application of classical statistical methods on vertical profiles. Such approach has important limitations since classical methods do not explicitly contemplate the vertical nature of the profiles. Functional Data Analysis (FDA) is a new alternative to solve such drawbacks. Here, we apply an FDA approach to characterise the 3D canonical thermohaline structure of the SWTA in austral spring and fall. Our results reveal a clear spatial pattern with the presence of three areas with significantly different thermohaline structure. Area 1, mostly located along the continental slope, reflects the western boundary current system, with low static stability and high frequency of occurrence of barrier layer (BL). Conversely, Area 2, located along the Fernando de Noronha chain, presents strong static stability with a well-marked thermocline. This area, under the influence of the eastern Atlantic, is characterised by a low BL frequency, which is seasonally modulated by the latitudinal oscillation of the Intertropical Convergence Zone, controlling the regime of precipitation. In turn, Area 3 behaves as a transition zone between A1 and A2 with the presence of the water core of maximum salinity in subsurface, and therefore presence of strong-moderate BL. Beyond this study, FDA approach emerges as a powerful way to describe, characterise, classify and compare ocean patterns and processes. It can be applied to in situ data but could also be used to deeply and comprehensively explore ocean model output.
|
![]() ![]() |
2019 |
|
Annasawmy, P., et al. "Micronekton distributions and assemblages at two shallow seamounts of the south-western Indian Ocean: Insights from acoustics and mesopelagic trawl data." Prog. Oceanogr.. 178 (2019): 102161.
Résumé: Micronekton distributions and assemblages were investigated at two shallow seamounts of the south-western Indian Ocean using a combination of trawl data and a multi-frequency acoustic visualisation technique. La Pa rouse seamount (summit depth similar to 60 m) is located on the outskirts of the oligotrophic Indian South Subtropical Gyre (ISSG) province with weak mesoscale activities and low primary productivity all year round. The “MAD-Ridge” seamount (thus termed in this study; similar to 240 m) is located in the productive East African Coastal (EAFR) province with high mesoscale activities to the south of Madagascar. Higher micronekton species richness was recorded at MAD-Ridge compared to La Perouse. Resulting productivity at MAD-Ridge seamount was likely due to the action of mesoscale eddies advecting productivity and larvae from the Madagascar shelf rather than local dynamic processes such as Taylor column formation. Mean micronekton abundance/biomass, as estimated from mesopelagic trawl catches, were lower over the summit compared to the vicinity of the seamounts, due to net selectivity and catchability and depth gradient on micronekton assemblages. Mean acoustic densities in the night shallow scattering layer (SSL: 10-200 m) over the summit were not significantly different compared to the vicinity (within 14 nautical miles) of MAD-Ridge. At La Perouse and MAD-Ridge, the night and day SSL were dominated by common diel vertically migrant and non-migrant micronekton species respectively. While seamount-associated mesopelagic fishes such as Diaphus suborbitalis (La Perouse and MAD-Ridge) and Benthosema fibula= performed diel vertical migrations (DVM) along the seamounts' flanks, seamount-resident benthopelagic fishes, including Cookeolus japonicus (MAD-Ridge), were aggregated over MAD-Ridge summit. Before sunrise, mid-water migrants initiated their vertical migration from the intermediate to the deep scattering layer (DSL, La Perouse: 500-650 m; MAD-Ridge: 400-700 m) or deeper. During sunrise, the other taxa contributing to the night SSL exhibited a series of vertical migration events from the surface to the DSL or deeper until all migrants have reached the DSL before daytime. Possible mechanisms leading to the observed patterns in micronekton vertical and horizontal distributions are discussed. This study contributes to a better understanding of how seamounts influence the DVM, horizontal distribution and community composition of micronekton and seamount-associated/resident species at two poorly studied shallow topographic features in the south-western Indian Ocean.
|
![]() ![]() |
Imzilen, T., et al. "Fish aggregating devices drift like oceanographic drifters in the near-surface currents of the Atlantic and Indian Oceans." Progress in Oceanography. 171 (2019): 108–127. |
![]() ![]() |
2018 |
|
Annasawmy, P., et al. "Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes." Deep-Sea Res. Part I-Oceanogr. Res. Pap.. 138 (2018): 85–97.
Résumé: Spatial distribution, community composition and trophic roles of micronekton (crustaceans, fishes and squids) were investigated in the Indian South Subtropical Gyre (ISSG) province and the East African Coastal province (EAFR), by combining acoustic surveys, mid-water trawls and stable isotope analyses from scientific cruises conducted in 2009 and 2010. Mesopelagic micronekton performed diel vertical migrations in both provinces, from deep (400-740 m) to surface (0-200 m) layers at dusk and in the opposite direction at dawn, with some species migrating below 740 m. The EAFR province was more dynamic than the oligotrophic ISSG province, with enhanced eddy activity and enhanced yearly productivity. The active enrichment mechanisms in the EAFR, in terms of available primary production, led to high micronekton acoustic density (as a proxy of micronekton abundance) and large micronekton weight and abundance estimates from trawl data. Particulate organic matter in the EAFR exhibited greater enrichment in C-13 and N-15 compared to the ISSG and, consequently, tissues of selected micronekton organisms in the EAFR were more enriched in N-15 (higher delta N-15 values). In both provinces, micronekton encompassed a wide range of isotopic niches, with large overlaps between species. Micronekton and swordfish in the EAFR had an overlapping range of delta N-15 values, contrasting with the ISSG province where swordfish were two trophic levels higher than the sampled micronekton. Our results provide some evidence that the combined action of riverine input and the dynamics of eddies might influence productivity in the EAFR, and hence the abundance of micronekton and the enrichment of tissues in N-15, compared to the oligotrophic ISSG province.
Mots-Clés: Diel vertical migration; East African Coastal province; equatorial atlantic; feeding ecology; Indian South Subtropical Gyre; large pelagic fishes; mesopelagic fishes; mesoscale features; Micronekton; mozambique channel; myctophid fishes; north-atlantic ocean; respiratory carbon; Trophic level; vertical-distribution
|
![]() ![]() |
2014 |
|
Hancke, L., M. J. Roberts, and J. - F. Ternon. "Surface drifter trajectories highlight flow pathways in the Mozambique Channel." Deep-Sea Research Part II.Topical Studies in Oceanography. 100.No spécial (2014): 27–37.
Résumé: The pattern of surface circulation in the Mozambique Channel was elucidated from the trajectories of 82 satellite-tracked drifters over the period 2000-2010 and complementary satellite-derived altimetry. Overall, the trajectories indicated that anticyclonic activity was mostly observed on the western side of the Channel, with cyclonic activity being more prevalent in the east. A lack of eddy activity was noted in the southeast corner of the Channel (i.e. SW of Madagascar). Drifter behaviour illustrated that surface water from the Comoros Basin, entrained into anticyclonic eddies during formation, can be retained and isolated for months whilst being transported southwards through the Channel. During a tropical cyclone weather event, a drifter was observed to switch between counter-rotating eddies indicating that horizontal mixing of the Ekman layer does occur. The drifters also illustrated and emphasised the flow field and transport between eddies (i.e. the interstitial flow) in the Mozambique Channel. Despite the dominance of southward propagating anticyclones, drifters were able to move north and south through the Channel in the frontal flow field between eddies within periods of 51-207 days. Cross-channel transport in both directions between the Madagascan and Mozambique shelf regions was similarly observed, with time spans of 19-30 days. Surprisingly, drifters from the southern limb of the East Madagascar Current were transported westward across the channel to the Mozambique shelf. This transport was similarly facilitated by the frontal flow field between eddies. It is hypothesised that the frontal zones between eddies and interstitial waters play an important role in distributing biota in the Mozambique Channel.
|
![]() ![]() |
Jaquemet, S., et al. "Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel." Deep-Sea Research Part II.Topical Studies in Oceanography. 100.No spécial (2014): 200–211.
Résumé: The Mozambique Channel (western Indian Ocean) is a dynamic environment characterised by strong mesoscale features, which influence all biological components of the pelagic ecosystem. We investigated the distribution, abundance and feeding behaviour of seabirds in the Mozambique Channel in relation to physical and biological environmental variables, with a specific interest in mesoscale features. Seabird censuses were conducted in summer and winter during 7 cruises in the southern and northern Mozambique Channel. Tropical species accounted for 49% of the 37 species identified and 97% of the individuals, and species from the sub-Antarctic region constituted 30% of the identifications. The typically tropical sooty tern (Onychoprion fuscata) was the dominant species during all cruises, and overall accounted for 74% of the species observations and 85% of counted birds. Outputs of Generalised Linear Models at the scale of the Mozambique Channel suggested that higher densities of flying and feeding birds occurred in areas with lower sea surface temperatures and lower surface chlorophyll a concentrations. Most of the flocks of feeding birds did not associate with surface schools of fish or marine mammals, but when they did, these flocks were larger, especially when associated with tuna. While tropical species seemed to favour cyclonic eddies, frontal and divergence zones, non-tropical species were more frequently recorded over shelf waters. Sooty terns foraged preferentially in cyclonic eddies where zooplankton, micronelcton and tuna schools were abundant. Among other major tropical species, frigatebirds (Fregata spp.) predominated in frontal zones between eddies, where tuna schools also frequently occurred and where geostrophic currents were the strongest. Red-footed boobies (Sula sub) concentrated in divergence zones characterised by low sea level anomalies, low geostrophic currents, and high zooplanlcton biomass close to the surface. Our results highlight the importance of mescoscale features in structuring the tropical seabird community in the Mozambique Channel, in addition to segregating tropical and non-tropical species. The mechanisms underlying the segregation of tropical seabirds seem to partially differ from that of other tropical regions, and this may be a consequence of the strong local mesoscale activity, affecting prey size and availability schemes. Beyond characterising the foraging habitats of the seabird community of the Mozambique Channel, this study highlights the importance of this region as a hot spot for seabirds; especially the southern part, where several endangered sub-Antarctic species over-winter.
|
![]() ![]() |
Marsac, F., et al. "Ecosystem functioning in the Mozambique Channel : synthesis and future research." Deep-Sea Research Part II.Topical Studies in Oceanography. 100.No spécial (2014): 212–220.
Résumé: The MESOBIO programme investigated mesoscale dynamics using an integrated ecosystem approach, linking physical and biogeochemical processes with different trophic levels. Observation and modeling were used in combination to explain the main processes occurring in the mesoscale eddy field. The particular shape of the Mozambique Channel, composed of two basins interconnected through a narrow zone, favours the generation of mesoscale eddies and increases the opportunity for eddy-shelf interactions. Phytoplankton abundance peaked in areas of nutrient enrichment that are often found in the core of cyclonic eddies, as well as on the continental shelf. Grazers in zooplankton communities exhibited high biovolume in cyclonic eddies, but their abundance was lower in fronts and divergence zones, with lowest biovolume in anticyclones. Biovolume was highest at shelf stations, but very variable and similar to phytoplankton. Age of eddies, their subsequent maturation stage and the dynamics of the eddy field played a major role effecting zooplankton abundance. Micronekton presented abundance patterns coherent with zooplankton distribution, however this was only demonstrated by acoustic methods, whereas mid-water trawl collection and predators stomach contents (predators being used as biological samplers) did not reveal significant relationships with mesoscale features. For upper trophic levels, the average density of foraging seabirds was lowest in anticyclones, highest in cyclones and at intermediate levels in divergence, shelf and frontal zones. However, multifaceted behavioral responses were observed in such a highly variable environment. Swordfish was clearly associated with divergence zones, and to a lesser extent with fronts, suggesting that the higher density in divergences was related to the presence of its main prey, essentially large squids. Although tunas tended to be more abundant in areas with weak geostrophic currents, their relationship to mesoscale features was not straightforward as adult tunas caught by longline have the ability to explore different foraging habitats over a broad range of depths. Several suggestions for advancing eddy-related research from the current state of knowledge are proposed in the second part of the paper.
|
![]() ![]() |
Roberts, M. J., J. - F. Ternon, and T. Morris. "Interaction of dipole eddies with the western continental slope of the Mozambique Channel." Deep-Sea Research Part II.Topical Studies in Oceanography. 100.no spécial (2014): 54–67.
Résumé: Sea Level Anomaly (SLA) data were used to track a southward propagating eddy dipole along the western slope of the Mozambique Channel over some 6 months. In April 2005, this dipole (with the cyclone to the south) was close to the continental slope off southern Mozambique. The contact zone between the contra-rotating vortices and the slope was surveyed by ship using onboard (S-)ADCP and CTD lines. The data showed strong ( > 1.4 m s(-1)) southward (geostrophic) currents over the slope adjacent to the anticyclone with horizontal divergence over the shelf edge. Significant slope upwelling between the dipole and the shelf was evident, concomitant with enhanced nutrient and chlorophyll levels enriching shelf near-surface waters. Satellite observations depicted a 300 km long surface chlorophyll filament extending offshore in the frontal zone between the contra-rotating vortices. A satellite-tracked drifter deployed at the coastal base of this filament confirmed the offshore advection of chlorophyll-enriched shelf water, which ultimately wrapped around the cyclone and filling its centre. The slope upwelling was also clearly evident in hourly temperature data collected by a recorder deployed on a nearby reef (Zambia Reef) in a depth of 18 m. According to the SLA data, the dipole took several weeks to pass Zambia Reef causing prolonged bouts of upwelling that finally ceased when it left the continental slope and moved southwards into the open ocean. Further analysis showed that lone anticyclones and cyclones against the Mozambique continental shelf also induce slope upwelling as a result of horizontal divergence created by the radial circulation of the vortex. In the case of cyclones, the divergence occurs north of the contact zone. Overall, this case study confirms that eddies moving southwards along the western side of the Mozambique Channel are the main mechanism for pumping nutrients into the otherwise oligotrophic surface waters, and moreover, provide a vigorous mechanism for shelf-open ocean exchange.
Mots-Clés: Chlorophyll filaments; Currents; Dipole eddies; Mozambique Channel; Slope upwelling
|
![]() ![]() |
Ternon, J. - F., et al. "The Mozambique Channel : from physics to upper trophic levels." Deep-Sea Research Part II.Topical Studies in Oceanography. 100.No spécial (2014): 1–9.
Résumé: A multidisciplinary programme, MESOBIO (Influence of mesoscale dynamics on biological productivity at multiple trophic levels in the Mozambique Channel) was undertaken in the Mozambique Channel within the framework of a scientific partnership between France and South Africa. MESOBIO focused on the signature of the highly energetic eddy dynamics in the Mozambique Channel. The Channel, which is known to be one of the most turbulent areas in the world ocean, has a great diversity of marine organisms and is the site of active pelagic fisheries. MESOBIO was mostly based on observations at sea during 12 multidisciplinary cruises between 2002 and 2010. Hydrographic measurements, sampling of biological organisms ranging from phytoplankton to top predators, and experiments on primary production and energy transfer through the food web, were conducted onboard various research vessels. The data were analysed in relation to eddy field characteristics for the periods of the cruises, including seasonal or inter-annual variability in mesoscale activity. A modelling approach was also developed within MESOBIO for both the circulation in the Channel and the biogeochemical response to eddy forcing. This paper introduces the suite of articles on the MESOBIO investigations by summarizing background knowledge for the different disciplines and the key issues that were addressed within the programme.
|
![]() ![]() |
Ternon, J. F., et al. "In situ measured current structures of the eddy field in the Mozambique Channel." Deep Sea Research Part II: Topical Studies in Oceanography (2014): 10–26.
Résumé: Circulation and the related biological production have been studied during five cruises conducted in the Mozambique Channel (MZC) between 2005 and 2010. The circulation in the MZC is known to be highly turbulent, favouring enhanced primary production as a result of mesoscale eddy dynamics, and connectivity throughout the Channel due to the variable currents associated with migrating eddies. This paper presents the results of in situ measurements that characterize the horizontal and vertical currents in the surface and subsurface layers (0–500 m). The in situ data were analysed together with the geostrophic eddy field observed from satellite altimeter measurements. Different circulation regimes were investigated, including the “classical” anticyclonic eddy generated at the Channel narrows (16°S), the enhancement of southward migrating eddies by merging with structures (both cyclonic and anticyclonic) formed in the east of the Channel, and the presence of a fully developed cyclonic eddy at the Channel narrows. Comparison between in situ measurements (S-ADCP and velocities derived from surface drifters) and the geostrophic current derived from sea surface height measurements indicated that the latter can provide a reliable, quantitative description of eddy driven circulation in the MZC, with the exception that these currents are weaker by as much 30%. It is also suggested from in situ observation (drifters) that the departure from geostrophy of the surface circulation might be linked to strong wind conditions. Finally, our observations highlight that a-geostrophic currents need to be considered in future research to facilitate a more comprehensive description of the circulation in this area.
|
![]() ![]() |
2009 |
|
Sabarros, P., et al. "Mesoscale eddies influence distribution and aggregation patterns of micronekton in the Mozambique Channel." Mar. Ecol.-Prog. Ser.. 395 (2009): 101–107.
Résumé: Oceanic mesoscale circulation is a crucial structuring force for the marine environment. Dynamical processes associated with eddies such as eddy-induced upwelling or eddy-eddy interaction drive the transport and distribution of nutrients which support the whole food chain presumably through bottom-up processes. It has been largely documented that eddies can shape the distribution of both low (phytoplankton, zooplankton and fish larvae) and high trophic levels (top fish predators, seabirds or turtles) but the impact of mesoscale features on intermediate trophic levels (micronekton) remains poorly explored. In this work, we analysed the influence of eddies on the distribution of micronekton aggregations in the Mozambique Channel by combining acoustic data and satellite sea topography data. We demonstrated that large aggregations of micronekton occurred mainly in areas of high local horizontal gradient of sea level anomaly, i.e., at the periphery of eddies. We observed that eddies in the region, when running along the coast, advect at their edges coastal rich waters, which support the base of the trophic chain. We propose that eddies can shape the distribution and the aggregation patterns of the forage fauna of marine top predators through bottom-up processes.
|
![]() ![]() |