Cecile ROQUES
Informations
EMAIL : cecile.roques cnrs.fr
: 0467144188
ADRESSE :
Université de Montpellier - Place Eugène Bataillon - Batiment 24, Rez de Chaussé - 34095 - Montpellier - FR
Institut : /BOUCLE_groupemots>
CNRS
GRADE : /BOUCLE_groupemots>
ASIN
LIEU GEOGRAPHIQUE : /BOUCLE_groupemots>
MONTPELLIER
Gouvernance : /BOUCLE_groupemots>
Conseil d’unité - Membres élus
Thèmes de recherche : /BOUCLE_groupemots>
Micro-organismes et interactions avec les macro-organismes
Pôles communs : /BOUCLE_groupemots>
Technique
//B_mots>
Publications
2018 |
|
Lagarde, F., et al. "Trophic environments influence size at metamorphosis and recruitment performance of Pacific oysters." Marine Ecology Progress Series. 602 (2018): 135–153.
Résumé: Reproduction and recruitment of benthic invertebrates are influenced by the climate and by the ecological structure of marine ecosystems, along with local anthropogenic pressures such as eutrophication or oligotrophication. Using the Pacific oyster Crassostrea gigas as a biological model, we tested the hypothesis that the variability in prodissoconch II (PII) size (i.e. size at metamorphosis) depends on ecological functioning. Settlement and recruitment were assessed at 5 sampling sites on the French Mediterranean shellfish farmed Thau lagoon during the main summer recruitment events in 3 consecutive years (2012-2014). Hydrobiological and planktonic analyses were conducted at 3 sampling sites. Our results showed that recruitment was extremely heterogeneous, ranging from 0 to 260 ± 27 SE ind. dm-2 throughout the ecosystem and was linked with variability in PII size, which ranged from 180 to 296 µm. The annual temporal pattern of PII sizes appeared to be controlled by temperature during the settlement period, whereas the spatial pattern depended on phytoplankton biomass and on the trophic functioning of the ecosystem. Smaller PII sizes were significantly correlated with the highest phytoplankton biomass, while larger PII sizes were positively correlated with mixotrophic cryptophyte abundance. We found an inverse relationship between PII size and survival after metamorphosis, showing that recruitment success was associated with smaller PII sizes. Regional climate conditions and local trophic functioning appear to be key factors in metamorphosis and consequently contribute to recruitment heterogeneity. Further studies should be performed in other ecosystems following an oligotrophication trajectory to generalize this result.
|
![]() ![]() |
Lopez-Joven, C., et al. "Oyster Farming, Temperature, and Plankton Influence the Dynamics of Pathogenic Vibrios in the Thau Lagoon." Front. Microbiol.. 9 (2018).
Résumé: Vibrio species have been associated with recurrent mass mortalities of juvenile oysters Crassostrea gigas threatening oyster farming worldwide. However, knowledge of the ecology of pathogens in affected oyster farming areas remains scarce. Specifically, there are no data regarding (i) the environmental reservoirs of Vibrio populations pathogenic to oysters, (ii) the environmental factors favoring their transmission, and (iii) the influence of oyster farming on the persistence of those pathogens. This knowledge gap limits our capacity to predict and mitigate disease occurrence. To address these issues, we monitored Vibrio species potentially pathogenic to C. gigas in 2013 and 2014 in the Thau Lagoon, a major oyster farming region in the coastal French Mediterranean. Sampling stations were chosen inside and outside oyster farms. Abundance and composition of phyto-, microzoo-, and mesozooplankton communities were measured monthly. The spatial and temporal dynamics of plankton and Vibrio species were compared, and positive correlations between plankton species and vibrios were verified by qPCR on isolated specimens of plankton. Vibrio crassostreae was present in the water column over both years, whereas Vibrio tasmaniensis was mostly found in 2013 and Vibrio aestuarianus was never detected. Moreover, V. tasmaniensis and V. crassostreae were found both as free-living or plankton-attached vibrios one month after spring mortalities of the oyster juveniles. Overall, V. crassostreae was associated with temperature and plankton composition, whereas V. tasmaniensis correlated with plankton composition only. The abundance of Vibrio species in the water column was similar inside and outside oyster farms, suggesting important spatial dispersion of pathogens in surrounding areas. Remarkably, a major increase in V. tasmaniensis and V. crassostreae was measured in the sediment of oyster farms during cold months. Thus, a winter reservoir of pathogenic vibrios could contribute to their ecology in this Mediterranean shellfish farming ecosystem.
Mots-Clés: bivalve mollusks; mortality outbreak; Phytoplankton; Shellfish farming; Vibrio; Zooplankton
|
![]() ![]() |
2017 |
|
Fouilland, E., et al. "Significant Change in Marine Plankton Structure and Carbon Production After the Addition of River Water in a Mesocosm Experiment." Microbial Ecology. 74.2 (2017): 289–301.
Résumé: Rivers are known to be major contributors to eutrophication in marine coastal waters, but little is known on the short-term impact of freshwater surges on the structure and functioning of the marine plankton community. The effect of adding river water, reducing the salinity by 15 and 30%, on an autumn plankton community in a Mediterranean coastal lagoon (Thau Lagoon, France) was determined during a 6-day mesocosm experiment. Adding river water brought not only nutrients but also chlorophyceans that did not survive in the brackish mesocosm waters. The addition of water led to initial increases (days 1-2) in bacterial production as well as increases in the abundances of bacterioplankton and picoeukaryotes. After day 3, the increases were more significant for diatoms and dinoflagellates that were already present in the Thau Lagoon water (mainly Pseudo-nitzschia spp. group delicatissima and Prorocentrum triestinum) and other larger organisms (tintinnids, rotifers). At the same time, the abundances of bacterioplankton, cyanobacteria, and picoeukaryote fell, some nutrients (NH4 (+), SiO4 (3-)) returned to pre-input levels, and the plankton structure moved from a trophic food web based on secondary production to the accumulation of primary producers in the mesocosms with added river water. Our results also show that, after freshwater inputs, there is rapid emergence of plankton species that are potentially harmful to living organisms. This suggests that flash flood events may lead to sanitary issues, other than pathogens, in exploited marine areas.
|
![]() ![]() |
Lagarde, F., et al. "Recruitment of the Pacific oyster Crassostrea gigas in a shellfish-exploited Mediterranean lagoon: discovery, driving factors and a favorable environmental window." Mar Ecol Prog Ser. 578 (2017): 1–17.
Résumé: ABSTRACT: In the context of increasing demand for environmental recovery, aquatic systems may face the challenge of evolving under oligotrophication. This is the case in Mediterranean lagoons, in particular the shellfish-farmed Thau lagoon in France, where we studied recruitment of the Pacific oyster Crassostrea gigas. Oyster spat and environmental parameters were monitored at several sampling sites for 3 yr (2012 to 2014) using an original method with a temporal overlap deployment of collectors to study pre- and post-settlement processes and to identify the best conditions for recruitment. Contrary to the ‘no Pacific oyster reproduction’ paradigm in Mediterranean lagoons, our study showed that recruitment of this introduced species is possible in the Thau lagoon at levels comparable to those in other traditional French breeding basins. We identified a favorable environmental window for recruitment characterized by high water temperature (>26.5°C) and high nanophytoplankton and Chaetoceros spp. abundances (>4.3 × 106 and 345 × 103 cells l-1, respectively). In these favorable conditions, we hypothesize that the ecosystem functions as an autotrophic system, in contrast to the heterotrophic system that characterizes unfavorable conditions. Under heterotrophic conditions, high abundances of mixotrophic and heterotrophic organisms (ciliates and dinoflagellates) limited the metamorphosis of C. gigas larvae, leading to poor recruitment. This study provides new knowledge on the reproduction of the Pacific oyster in a Mediterranean lagoon under warming and oligotrophication. The shellfish industry will profit from the discovery of spatfields to develop new nursery practices that are eco-friendly and limit risks of transfers with other spatfall areas.
|
![]() ![]() |
Leboulanger, C., et al. "Microbial Diversity and Cyanobacterial Production in Dziani Dzaha Crater Lake, a Unique Tropical Thalassohaline Environment." Plos One. 12.1 (2017): e0168879.
Résumé: This study describes, for the first time, the water chemistry and microbial diversity in Dziani Dzaha, a tropical crater lake located on Mayotte Island (Comoros archipelago, Western Indian Ocean). The lake water had a high level of dissolved matter and high alkalinity (10.6–14.5 g L-1 eq. CO32-, i.e. 160–220 mM compare to around 2–2.5 in seawater), with salinity up to 52 psu, 1.5 higher than seawater. Hierarchical clustering discriminated Dziani Dzaha water from other alkaline, saline lakes, highlighting its thalassohaline nature. The phytoplankton biomass was very high, with a total chlorophyll a concentration of 524 to 875 μg chl a L-1 depending on the survey, homogeneously distributed from surface to bottom (4 m). Throughout the whole water column the photosynthetic biomass was dominated (>97% of total biovolume) by the filamentous cyanobacteria Arthrospira sp. with a straight morphotype. In situ daily photosynthetic oxygen production ranged from 17.3 to 22.2 g O2 m-2 d-1, consistent with experimental production / irradiance measurements and modeling. Heterotrophic bacterioplankton was extremely abundant, with cell densities up to 1.5 108 cells mL-1 in the whole water column. Isolation and culture of 59 Eubacteria strains revealed the prevalence of alkaliphilic and halophilic organisms together with taxa unknown to date, based on 16S rRNA gene analysis. A single cloning-sequencing approach using archaeal 16S rDNA gene primers unveiled the presence of diverse extremophilic Euryarchaeota. The water chemistry of Dziani Dzaha Lake supports the hypothesis that it was derived from seawater and strongly modified by geological conditions and microbial activities that increased the alkalinity. Dziani Dzaha has a unique consortium of cyanobacteria, phytoplankton, heterotrophic Eubacteria and Archaea, with very few unicellular protozoa, that will deserve further deep analysis to unravel its uncommon diversity. A single taxon, belonging to the genus Arthrospira, was found responsible for almost all photosynthetic primary production.
Mots-Clés: Biomass (ecology); Cyanobacteria; Lakes; Oxygen; Phytoplankton; Ribosomal RNA; Sea water; Surface water
|
![]() ![]() |
2016 |
|
Bouvy, M., et al. "Plankton communities in the five Iles Eparses (Western Indian Ocean) considered to be pristine ecosystems." Acta Oecologica (2016): 9–20.
Résumé: Coral reef environments are generally recognized as being the most threatened of marine ecosystems. However, it is extremely difficult to distinguish the effects of climate change from other forcing factors, mainly because it is difficult to study ecosystems that are isolated from human pressure. The five Iles Eparses (Scattered Islands) are located in the Western Indian Ocean (WIO) and can be considered to be “pristine” ecosystems not subject to anthropogenic pressure. This study characterized their plankton assemblages for the first time, by determining the abundances of microbial (virus, bacteria, heterotrophic protists and phytoplankton) and metazooplankton communities in various lagoon and ocean sites around each island. The Europa lagoon has extensive, productive mangrove forests, which have the highest nutrient concentrations (nitrogen forms, dissolved organic carbon) and whose microbial communities present a peculiar structure and functioning. By means of bioassay experiments, we observed that bacterial production and growth rates are higher in Europa than those reported for the other islands. Tromelin, which lies outside the Mozambique Channel, had the lowest biological productivity, nutrient concentrations, and bacterial growth rates. Multivariate analysis indicated that distinct microbial assemblages occur in association to varying nutrient concentrations. Molecular fingerprinting showed clear discrimination of the structure of the archaea, bacteria and eukaryotes community between the sites. Our results suggest that the geographical distance can influence the diversity of dominant microbial taxa in the WIO.
|
![]() ![]() |
2015 |
|
Alves-de-Souza, C., et al. "Significance of Plankton Community Structure and Nutrient Availability for the Control of Dinoflagellate Blooms by Parasites: A Modeling Approach." PLoS ONE. 10.6 (2015): e0127623.
Résumé: Dinoflagellate blooms are frequently observed under temporary eutrophication of coastal waters after heavy rains. Growth of these opportunistic microalgae is believed to be promoted by sudden input of nutrients and the absence or inefficiency of their natural enemies, such as grazers and parasites. Here, numerical simulations indicate that increasing nutrient availability not only promotes the formation of dinoflagellate blooms but can also stimulate their control by protozoan parasites. Moreover, high abundance of phytoplankton other than dinoflagellate hosts might have a significant dilution effect on the control of dinoflagellate blooms by parasites, either by resource competition with dinoflagellates (thus limiting the number of hosts available for infection) or by affecting numerical-functional responses of grazers that consume free-living parasite stages. These outcomes indicate that although both dinoflagellates and their protozoan parasites are directly affected by nutrient availability, the efficacy of the parasitic control of dinoflagellate blooms under temporary eutrophication depends strongly on the structure of the plankton community as a whole.
|
![]() ![]() |
Bouvy, M., et al. "Importance of predation and viral lysis for bacterial mortality in a tropical western Indian coral-reef ecosystem (Toliara, Madagascar)." Mar. Freshwater Res. (2015).
Résumé: Size fractionation was performed using water from the Great Reef of Toliara (Madagascar) taken from two different habitats (ocean and lagoon) during the dry and wet seasons, to study the growth and mortality rates of bacterioplankton. Experiments were conducted with 1 and 100% of heterotrophic nanoflagellate (HNF) concentrations and virus-free water was obtained by tangential filtration (10 kDa). During the dry season, in both environments, bacterial abundance and production were significantly lower than values recorded during the wet season. Bacterial growth rates without grazers were 0.88 day–1 in the lagoon and 0.58 day–1 in the ocean. However, growth rates were statistically higher without grazers and viruses (1.58 day–1 and 1.27 day–1). An estimate of virus-induced bacterial mortality revealed the important role played by viruses in the lagoon (0.70 day–1) and the ocean (0.69 day–1). During the wet season, bacterial growth rates without grazers were significantly higher in both environments than were values obtained in the dry season. However, the bacterial growth rates were paradoxally lower in the absence of viruses than with viruses in both environments. Our results suggest that changes in nutrient concentrations can play an important role in the balance between viral lysis and HNF grazing in the bacterial mortality. However, virus-mediated bacterial mortality is likely to act simultaneously with nanoflagellates pressure in their effects on bacterial communities.
|
![]() ![]() |
Caro, A., et al. "Contrasted responses of Ruditapes decussatus (filter and deposit feeding) and Loripes lacteus (symbiotic) exposed to polymetallic contamination (Port-Camargue, France)." Science of The Total Environment. 505 (2015): 526–534.
Résumé: Abstract
The use of symbiotic bivalve species to assess the effect of anthropogenic metal pollution was rarely investigated whereas data on filter feeding bivalves are common. The aim of this study was the exposure of two bivalve species, Ruditapes decussatus and Loripes lacteus to polymetallic pollution gradient, originating from harbor activities (Port-Camargue, south of France). Both bivalves differ by their trophic status, filter and deposit feeder for Ruditapes and symbiotic for Loripes that underlies potential differences in metal sensibility. The bivalves were immerged in July (for Ruditapes during 2 and 8 days) and in August 2012 (for Loripes during 2, 6 and 8 days) in the water column of the harbor, at 3 stations according to pollution gradient. Metal concentrations (Cu, Mn, Zn) in the water column were quantified as dissolved metals (measured by ICP-MS) and as labile metals (measured by ICP-MS using DGT technique). For each exposure time, accumulation of metals in the soft tissue of bivalves (“bioaccumulation”) was measured for both species. In addition, specific parameters, according to the trophic status of each bivalve, were investigated: filtering activity (specific clearance rate, SCR) for Ruditapes, and relative cell size (SSC) and genomic content (FL1) of bacterial symbionts hosted in the gills of Loripes. The SCR of Ruditapes drops from 100% (control) to 34.7% after 2 days of exposure in the less contaminated site (station 8). On the other hand, the relative cell size (SSC) and genomic content (FL1), measured by flow cytometry were not impacted by the pollution gradient. Bioaccumulation was compared for both species, showing a greater capability of Cu accumulation for Loripes without lethal effect. Mn, Fe and Zn were generally not accumulated by any of the species according to the pollution gradient. The trophic status of each species may greatly influence their respective responses to polymetallic pollution. |
![]() ![]() |
De Wit, R., et al. "Viruses Occur Incorporated in Biogenic High-Mg Calcite from Hypersaline Microbial Mats." PLoS ONE. 10.6 (2015): e0130552.
Résumé: Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake “La Salada de Chiprana”, Spain, contain viruses with a diameter of 50–80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>1010 viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 109 viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as “nanobacteria” and that viruses may play a role in initiating calcification.
|
![]() ![]() |
Marques, R., et al. "Pelagic population dynamics of Aurelia sp. in French Mediterranean lagoons." Journal of Plankton Research. 37.5 (2015): 1019–1035.
Résumé: The pelagic dynamics of the cosmopolitan scyphozoan Aurelia sp. was investigated in three French Mediterranean lagoons, Thau, Berre and Bages-Sigean, which harbour resident populations. The annual cycles showed a common univoltine pattern in all lagoons where the presence of pelagic stages in the water column lasted ∼8 months. Field observations showed a release of ephyrae in winter time followed by pronounced growth between April and July, when individuals reached the largest sizes, before disappearing from the water column. Maximum abundance of ephyrae and medusae were registered in Thau. Medusae abundance attained a maximum of 331 ind 100 m−3 in Thau, 18 ind 100 m−3 in Berre and 7 ind 100 m−3 in Bages-Sigean lagoons. Temperature and zooplankton abundance appeared as leading factors of growth, where Bages-Sigean showed the population with higher growth rates (2.66 mm day−1) and maximum size (32 cm), followed by Thau (0.57–2.56 mm day−1; 22.4 cm) and Berre (1.57–2.22 mm day−1; 17 cm). The quantification of environmental windows used by the species showed wider ranges than previously reported in the Mediterranean Sea, which suggests a wide ecological plasticity of Aurelia spp. populations in north-western Mediterranean lagoons.
|
![]() ![]() |
Mostajir, B., et al. "Microbial food web structural and functional responses to oyster and fish as top predators." Mar Ecol Prog Ser. 535 (2015): 11–27.
Résumé: ABSTRACT: The impact of fish and oysters on components of the pelagic microbial food web (MFW) was studied in a 10 d mesocosm experiment using Mediterranean coastal waters. Two mesocosms contained natural water only , 2 contained natural water with Crassostrea gigas (Oyster), and 2 contained natural water with Atherina spp. (Fish). Abundances and biomasses of microorganisms (viruses, bacteria, phytoplankton, heterotrophic flagellates, and ciliates) were measured to estimate their contribution to the total microbial carbon biomass. Two MFW indices, the microbial autotroph:heterotroph C biomass ratio (A:H) structural index and the gross primary production:respiration ratio (GPP:R) functional index, were defined. In the Fish mesocosms, selective predation on zooplankton led to a trophic cascade with 51% higher phytoplankton C biomass and consequently higher A:H and GPP:R than in the Controls. By the end of the experiment, the Oyster mesocosms had a bacterial C biomass 87% higher and phytoplankton C biomass 93% lower than the Controls, giving significantly lower A:H and GPP:R (<1). Overall, the results showed that wild zooplanktivorous fish had a cascading trophic effect, making the MFW more autotrophic (both indices gt;1), whereas oyster activities made the MFW more heterotrophic (both indices lt;1). These MFW indices can therefore be used to assess the impact of multiple local and global forcing factors on the MFW. The results presented here also have implications for sustainable management of coastal environments, suggesting that intense cultivation of filter feeders can be coupled with management to encourage wild local zooplanktivorous fishes to maintain a more resilient system and preserve the equilibrium of the MFW.
|
![]() ![]() |
2014 |
|
Fouilland, E., et al. "Bacterial carbon dependence on freshly produced phytoplankton exudates under different nutrient availability and grazing pressure conditions in coastal marine waters." FEMS microbiology ecology. 87.3 (2014): 757–769.
Résumé: The effects of grazing pressure and inorganic nutrient availability on the direct carbon transfer from freshly produced phytoplankton exudates to heterotrophic bacteria biomass production were studied in Mediterranean coastal waters. The short-term incorporation of (1)(3)C (H(1)(3)CO(3)) in phytoplankton and bacterial lipid biomarkers was measured as well as the total bacterial carbon production (BP), viral lysis and the microbial community structure under three experimental conditions: (1) High inorganic Nutrient and High Grazing (HN + HG), (2) High inorganic Nutrient and Low Grazing (HN + LG) and (3) under natural in situ conditions with Low inorganic Nutrient and High Grazing (LN + HG) during spring. Under phytoplankton bloom conditions (HN + LG), the bacterial use of freshly produced phytoplankton exudates as a source of carbon, estimated from (1)(3)C enrichment of bacterial lipids, contributed more than half of the total bacterial production. However, under conditions of high grazing pressure on phytoplankton with or without the addition of inorganic nutrients (HN + HG and LN + HG), the (1)(3)C enrichment of bacterial lipids was low compared with the high total bacterial production. BP therefore seems to depend mainly on freshly produced phytoplankton exudates during the early phase of phytoplankton bloom period. However, BP seems mainly relying on recycled carbon from viral lysis and predators under high grazing pressure.
Mots-Clés: bacteria; carbon coupling; coastal waters; interactions; phytoplankton
|
![]() ![]() |
2012 |
|
Caro, A., et al. "Epibiotic bacterial community of Sphaeroma serratum (Crustacea, Isopoda): relationship with molt status." Mar. Ecol.-Prog. Ser.. 457 (2012): 11–27.
Résumé: Sphaeroma serratum is a marine isopod species that inhabits seashores from Europe to West Africa. The individuals live under stones in direct contact with reduced sediments and harbour a diverse bacterial community on the cuticle of their pleopods. We investigated the diversity of these epibiotic bacteria on male (pubescent and senescent) and female specimens with electron microscopic observations and molecular tools. The microbial community of S. serratum was shown to be composed of at least 5 bacterial morphotypes observed on the pleopodal cuticle in all male specimens. Using fluorescence in situ hybridization, we identified 5 major phylogenetic groups (alpha-, beta-, gamma- and delta-Proteobacteria and Archaea) whereas denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments of epibiotic bacteria revealed 50 bands. The bacterial community associated with S. serratum seems more diverse than in other marine crustaceans, such as Rimicaris. The relative diversity of this bacterial community was also studied in relation to the molt cycle. The comparison of DGGE band patterns of several individuals from female, pubescent male and senescent male groups revealed that the bacterial community diversity was dependent on the sex and the age of the individuals and more generally on the molt status.
Mots-Clés: 16s ribosomal-rna; Crustacean; DGGE band pattern; Epibiotic biofilm; Molt cycle; Sphaeroma; fish; gastropod; gradient gel-electrophoresis; hydrothermal-vent; in-situ hybridization; mid-atlantic ridge; oxidizing bacteria; phylogenetic diversity; riftia-pachyptila; shrimp rimicaris-exoculata; urothoe-poseidonis
|
![]() ![]() |
Fouilland, E., et al. "Impact of a river flash flood on microbial carbon and nitrogen production in a Mediterranean Lagoon (Thau Lagoon, France)." Estuarine Coastal and Shelf Science. 113 (2012): 192–204. |
![]() ![]() |
2011 |
|
Pecqueur, D., et al. "Dynamics of microbial planktonic food web components during a river flash flood in a Mediterranean coastal lagoon." Hydrobiologia. 673.1 (2011): 13–27. |
![]() ![]() |
Vidussi, F., et al. "Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web." Limnology and Oceanography. 56.1 (2011): 206–218. |
![]() ![]() |