Béhagle, N., du Buisson, L., Josse, E., Lebourges-Dhaussy, A., Roudaut, G., & Ménard, F. (2014). Mesoscale features and micronekton in the Mozambique Channel: An acoustic approach. Deep Sea Research Part II: Topical Studies in Oceanography, 100, 164–173.
|
Hancke, L., Roberts, M. J., & Ternon, J. - F. (2014). Surface drifter trajectories highlight flow pathways in the Mozambique Channel. Deep-Sea Research Part II.Topical Studies in Oceanography, 100(No spécial), 27–37.
Résumé: The pattern of surface circulation in the Mozambique Channel was elucidated from the trajectories of 82 satellite-tracked drifters over the period 2000-2010 and complementary satellite-derived altimetry. Overall, the trajectories indicated that anticyclonic activity was mostly observed on the western side of the Channel, with cyclonic activity being more prevalent in the east. A lack of eddy activity was noted in the southeast corner of the Channel (i.e. SW of Madagascar). Drifter behaviour illustrated that surface water from the Comoros Basin, entrained into anticyclonic eddies during formation, can be retained and isolated for months whilst being transported southwards through the Channel. During a tropical cyclone weather event, a drifter was observed to switch between counter-rotating eddies indicating that horizontal mixing of the Ekman layer does occur. The drifters also illustrated and emphasised the flow field and transport between eddies (i.e. the interstitial flow) in the Mozambique Channel. Despite the dominance of southward propagating anticyclones, drifters were able to move north and south through the Channel in the frontal flow field between eddies within periods of 51-207 days. Cross-channel transport in both directions between the Madagascan and Mozambique shelf regions was similarly observed, with time spans of 19-30 days. Surprisingly, drifters from the southern limb of the East Madagascar Current were transported westward across the channel to the Mozambique shelf. This transport was similarly facilitated by the frontal flow field between eddies. It is hypothesised that the frontal zones between eddies and interstitial waters play an important role in distributing biota in the Mozambique Channel.
|
Jaquemet, S., Ternon, J. - F., Kaehler, S., Thiebot, J. B., Dyer, B., Bemanaja, E., et al. (2014). Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel. Deep-Sea Research Part II.Topical Studies in Oceanography, 100(No spécial), 200–211.
Résumé: The Mozambique Channel (western Indian Ocean) is a dynamic environment characterised by strong mesoscale features, which influence all biological components of the pelagic ecosystem. We investigated the distribution, abundance and feeding behaviour of seabirds in the Mozambique Channel in relation to physical and biological environmental variables, with a specific interest in mesoscale features. Seabird censuses were conducted in summer and winter during 7 cruises in the southern and northern Mozambique Channel. Tropical species accounted for 49% of the 37 species identified and 97% of the individuals, and species from the sub-Antarctic region constituted 30% of the identifications. The typically tropical sooty tern (Onychoprion fuscata) was the dominant species during all cruises, and overall accounted for 74% of the species observations and 85% of counted birds. Outputs of Generalised Linear Models at the scale of the Mozambique Channel suggested that higher densities of flying and feeding birds occurred in areas with lower sea surface temperatures and lower surface chlorophyll a concentrations. Most of the flocks of feeding birds did not associate with surface schools of fish or marine mammals, but when they did, these flocks were larger, especially when associated with tuna. While tropical species seemed to favour cyclonic eddies, frontal and divergence zones, non-tropical species were more frequently recorded over shelf waters. Sooty terns foraged preferentially in cyclonic eddies where zooplankton, micronelcton and tuna schools were abundant. Among other major tropical species, frigatebirds (Fregata spp.) predominated in frontal zones between eddies, where tuna schools also frequently occurred and where geostrophic currents were the strongest. Red-footed boobies (Sula sub) concentrated in divergence zones characterised by low sea level anomalies, low geostrophic currents, and high zooplanlcton biomass close to the surface. Our results highlight the importance of mescoscale features in structuring the tropical seabird community in the Mozambique Channel, in addition to segregating tropical and non-tropical species. The mechanisms underlying the segregation of tropical seabirds seem to partially differ from that of other tropical regions, and this may be a consequence of the strong local mesoscale activity, affecting prey size and availability schemes. Beyond characterising the foraging habitats of the seabird community of the Mozambique Channel, this study highlights the importance of this region as a hot spot for seabirds; especially the southern part, where several endangered sub-Antarctic species over-winter.
|
Jose, Y. S., Aumont, O., Machu, E., Penven, P., Moloney, C. L., & Maury, O. (2014). Influence of mesoscale eddies on biological production in the Mozambique Channel : several contrasted examples from a coupled ocean-biogeochemistry model. Deep-Sea Research Part II.Topical Studies in Oceanography, 100(No spécial), 79–93.
Résumé: The impact of mesoscale activity on phytoplankton and nutrient distribution in the Mozambique Channel was simulated by coupling a biogeochemical model (PISCES) with a regional oceanic model (ROMS). Examples of the effects of eddies on the biogeochemistry of the Mozambique Channel are presented to illustrate the complexity of the system. In the model, several cyclonic eddies were found with low concentrations of chlorophyll at their cores, which contrasts with previous studies in the open ocean. In addition, several anticyclonic eddies were simulated with high concentrations of chlorophyll at their cores. Phytoplankton growth within these mesoscale features (both cyclonic and anticyclonic eddies) occurred in response to nutrient injection into the euphotic zone by advection, and subsequent retention of surrounding nutrient-rich waters within eddies. Offshore nutrient distributions depended strongly on lateral advection of nutrient-rich water from the coastal regions, induced by eddy interaction with the shelf. The environmental conditions at the locations where eddies were generated had an important effect on nutrient concentrations within these structures.
|
Marsac, F., Barlow, R., Ternon, J. - F., Ménard, F., & Roberts, M. (2014). Ecosystem functioning in the Mozambique Channel : synthesis and future research. Deep-Sea Research Part II.Topical Studies in Oceanography, 100(No spécial), 212–220.
Résumé: The MESOBIO programme investigated mesoscale dynamics using an integrated ecosystem approach, linking physical and biogeochemical processes with different trophic levels. Observation and modeling were used in combination to explain the main processes occurring in the mesoscale eddy field. The particular shape of the Mozambique Channel, composed of two basins interconnected through a narrow zone, favours the generation of mesoscale eddies and increases the opportunity for eddy-shelf interactions. Phytoplankton abundance peaked in areas of nutrient enrichment that are often found in the core of cyclonic eddies, as well as on the continental shelf. Grazers in zooplankton communities exhibited high biovolume in cyclonic eddies, but their abundance was lower in fronts and divergence zones, with lowest biovolume in anticyclones. Biovolume was highest at shelf stations, but very variable and similar to phytoplankton. Age of eddies, their subsequent maturation stage and the dynamics of the eddy field played a major role effecting zooplankton abundance. Micronekton presented abundance patterns coherent with zooplankton distribution, however this was only demonstrated by acoustic methods, whereas mid-water trawl collection and predators stomach contents (predators being used as biological samplers) did not reveal significant relationships with mesoscale features. For upper trophic levels, the average density of foraging seabirds was lowest in anticyclones, highest in cyclones and at intermediate levels in divergence, shelf and frontal zones. However, multifaceted behavioral responses were observed in such a highly variable environment. Swordfish was clearly associated with divergence zones, and to a lesser extent with fronts, suggesting that the higher density in divergences was related to the presence of its main prey, essentially large squids. Although tunas tended to be more abundant in areas with weak geostrophic currents, their relationship to mesoscale features was not straightforward as adult tunas caught by longline have the ability to explore different foraging habitats over a broad range of depths. Several suggestions for advancing eddy-related research from the current state of knowledge are proposed in the second part of the paper.
|