BECHELER, R., BENKARA, E., MOALIC, Y., HILY, C., & ARNAUD-HAOND, S. (2014). Scaling of processes shaping the clonal dynamics and genetic mosaic of seagrasses through temporal genetic monitoring. Heredity, 112(2), 114–121.
Résumé: Theoretically, the dynamics of clonal and genetic diversities of clonal plant populations are strongly influenced by the competition among clones and rate of seedling recruitment, but little empirical assessment has been made of such dynamics through temporal genetic surveys. We aimed to quantify 3 years of evolution in the clonal and genetic composition of Zostera marina meadows, comparing parameters describing clonal architecture and genetic diversity at nine microsatellite markers. Variations in clonal structure revealed a decrease in the evenness of ramet distribution among genets. This illustrates the increasing dominance of some clonal lineages (multilocus lineages, MLLs) in populations. Despite the persistence of these MLLs over time, genetic differentiation was much stronger in time than in space, at the local scale. Contrastingly with the short-term evolution of clonal architecture, the patterns of genetic structure and genetic diversity sensu stricto (that is, heterozygosity and allelic richness) were stable in time. These results suggest the coexistence of (i) a fine grained (at the scale of a 20 x 30 m quadrat) stable core of persistent genets originating from an initial seedling recruitment and developing spatial dominance through clonal elongation; and (ii) a local (at the scale of the meadow) pool of transient genets subjected to annual turnover. This simultaneous occurrence of initial and repeated recruitment strategies highlights the different spatial scales at which distinct evolutionary drivers and mating systems (clonal competition, clonal growth, propagule dispersal and so on) operate to shape the dynamics of populations and the evolution of polymorphism in space and time.
|
Travis, J., Coleman, F. C., Auster, P. J., Cury, P., Estes, J. A., Orensanz, J., et al. (2014). Integrating the invisible fabric of nature into fisheries management. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 581–584.
Résumé: Overfishing and environmental change have triggered many severe and unexpected consequences. As existing communities have collapsed, new ones have become established, fundamentally transforming ecosystems to those that are often less productive for fisheries, more prone to cycles of booms and busts, and thus less manageable. We contend that the failure of fisheries science and management to anticipate these transformations results from a lack of appreciation for the nature, strength, complexity, and outcome of species interactions. Ecologists have come to understand that networks of interacting species exhibit nonlinear dynamics and feedback loops that can produce sudden and unexpected shifts. We argue that fisheries science and management must follow this lead by developing a sharper focus on species interactions and how disrupting these interactions can push ecosystems in which fisheries are embedded past their tipping points.
|
Mouillot, D., Villeger, S., Parravicini, V., Kulbicki, M., Arias-González, J. E., Bender, M., et al. (2014). Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences of the United States of America, 111(38), 13757–13762.
Résumé: When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.
|
Bonhommeau, S., Nieblas, A. E., Chassot, E., Kaplan, D., Dubroca, L., Manacorda, C., et al. (2014). Reply to Feeley and Machovina : trophic ecology complements estimates of land use change due to food production. Proceedings of the National Academy of Sciences of the United States of America, 111(9).
|
Nieblas, A. E., Bonhommeau, S., Le Pape, O., Chassot, E., Dubroca, L., Barde, J., et al. (2014). Reply to Roopnarine : what is an apex predator ? Proceedings of the National Academy of Sciences of the United States of America, 111(9).
|