Accueil | << 1 2 3 4 5 6 >> |
![]() |
Amelineau, F., Bonnet, D., Heitz, O., Mortreux, V., Harding, A. M. A., Karnovsky, N., et al. (2016). Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds. Environ. Pollut., 219, 1131–1139.
Résumé: Microplastics have been reported everywhere around the globe. With very limited human activities, the Arctic is distant from major sources of microplastics. However, microplastic ingestions have been found in several Arctic marine predators, confirming their presence in this region. Nonetheless, existing information for this area remains scarce, thus there is an urgent need to quantify the contamination of Arctic marine waters. In this context, we studied microplastic abundance and composition within the zooplankton community off East Greenland. For the same area, we concurrently evaluated microplastic contamination of little auks (Alle alle), an Arctic seabird feeding on zooplankton while diving between 0 and 50 m. The study took place off East Greenland in July 2005 and 2014, under strongly contrasted sea-ice conditions. Among all samples, 97.2% of the debris found were filaments. Despite the remoteness of our study area, microplastic abundances were comparable to those of other oceans, with 0.99 +/- 0.62 m(-3) in the presence of sea-ice (2005), and 2.38 +/- 1.11 m(-3) in the nearby absence of sea-ice (2014). Microplastic rise between 2005 and 2014 might be linked to an increase in plastic production worldwide or to lower sea -ice extents in 2014, as sea-ice can represent a sink for microplastic particles, which are subsequently released to the water column upon melting. Crucially, all birds had eaten plastic filaments, and they collected high levels of microplastics compared to background levels with 9.99 and 8.99 pieces per chick meal in 2005 and 2014, respectively. Importantly, we also demonstrated that little auks took more often light colored microplastics, rather than darker ones, strongly suggesting an active contamination with birds mistaking microplastics for their natural prey. Overall, our study stresses the great vulnerability of Arctic marine species to microplastic pollution in a warming Arctic, where sea-ice melting is expected to release vast volumes of trapped debris. (C) 2016 Elsevier Ltd. All rights reserved.
|
Amélineau, F., Grémillet, D., Bonnet, D., Bot, T. L., & Fort, J. (2016). Where to Forage in the Absence of Sea Ice? Bathymetry As a Key Factor for an Arctic Seabird. Plos One, 11(7), e0157764.
Résumé: The earth is warming at an alarming rate, especially in the Arctic, where a marked decline in sea ice cover may have far-ranging consequences for endemic species. Little auks, endemic Arctic seabirds, are key bioindicators as they forage in the marginal ice zone and feed preferentially on lipid-rich Arctic copepods and ice-associated amphipods sensitive to the consequences of global warming. We tested how little auks cope with an ice-free foraging environment during the breeding season. To this end, we took advantage of natural variation in sea ice concentration along the east coast of Greenland. We compared foraging and diving behaviour, chick diet and growth and adult body condition between two years, in the presence versus nearby absence of sea ice in the vicinity of their breeding site. Moreover, we sampled zooplankton at sea when sea ice was absent to evaluate prey location and little auk dietary preferences. Little auks foraged in the same areas both years, irrespective of sea ice presence/concentration, and targeted the shelf break and the continental shelf. We confirmed that breeding little auks showed a clear preference for larger copepod species to feed their chick, but caught smaller copepods and nearly no ice-associated amphipod when sea ice was absent. Nevertheless, these dietary changes had no impact on chick growth and adult body condition. Our findings demonstrate the importance of bathymetry for profitable little auk foraging, whatever the sea-ice conditions. Our investigations, along with recent studies, also confirm more flexibility than previously predicted for this key species in a warming Arctic.
Mots-Clés: Birds; Copepods; Foraging; Predation; Seabirds; Sea ice; Trophic interactions; Zooplankton
|
Annasawmy, P., Ternon, J. - F., Lebourges-Dhaussy, A., Roudaut, G., Cotel, P., Herbette, S., et al. (2020). Micronekton distribution as influenced by mesoscale eddies, Madagascar shelf and shallow seamounts in the south-western Indian Ocean: an acoustic approach. Deep-Sea Res. Part II-Top. Stud. Oceanogr., 176, 104812.
Résumé: An investigation of the vertical and horizontal distributions of micronekton, as influenced by mesoscale eddies, the Madagascar shelf and shallow seamounts, was undertaken using acoustic data collected during two research cruises at an unnamed pinnacle (summit depth similar to 240 m) thereafter named “MAD-Ridge”, and at La Perouse seamount (similar to 60 m) in the south-western Indian Ocean. MAD-Ridge is located to the south of Madagascar, in an “eddy corridor”, known both for its high mesoscale activity and high primary productivity. In contrast, La Perouse is located on the outskirts of the Indian South Subtropical Gyre (ISSG) province, characterised by low mesoscale activity and low primary productivity. During the MAD-Ridge cruise, a dipole was located in the vicinity of the seamount, with the anticyclone being almost stationary on the pinnacle. Total micronekton acoustic densities were greater at MAD-Ridge than at La Perouse. Micronekton acoustic densities of the total water column were lower within the anticyclone than within the cyclone during MAD-Ridge. Micronekton followed the usual diel vertical migration (DVM) pattern, except within the cyclone during MAD-Ridge where greater acoustic densities were recorded in the daytime surface layer. The backscatter intensities were stronger at the 38 kHz than at the 70 and 120 kHz frequencies in the daytime surface layer at MAD-Ridge cyclonic stations. These backscatter intensities likely correspond to gas-filled swimbladders of epi- and mesopelagic fish actively swimming and feeding within the cyclone or gelatinous organisms with gas inclusions. Our findings evidenced that the distributions of micronekton and DVM patterns are complex and are influenced significantly by physical processes within mesoscale eddies. The mesoscale eddies' effects were dominant over any potential seamount effects at the highly dynamic environment prevailing at MAD-Ridge during the cruise. No significant increase in total micronekton acoustic densities was observed over either seamount, but dense aggregations of biological scatterers were observed on their summits during both day and night.
Mots-Clés: biological production; circulation; community composition; deep-scattering layer; diel vertical migration; Diel vertical migration; dynamics; Madagascar shelf; mesopelagic fish; Mesoscale eddies; Micronekton; mozambique channel; Multi-frequency; myctophid fishes; Seamount; South-western indian ocean; zooplankton
|
Araújo Abrantes de Figueiredo, G. G., Schwamborn, R., Bertrand, A., Munaron, J. - M., & Le Loc'h, F. (2020). Body size and stable isotope composition of zooplankton in the western tropical Atlantic. J. Mar. Syst., 212, 103449.
Résumé: Size-based approaches are paramount tools for the study of marine food webs. Here, we investigated the relationship between zooplankton body size, stable isotope composition and trophic level (TL) along a large-scale onshore-offshore gradient in the western tropical Atlantic. Samples were obtained on the Brazilian continental shelf, slope and in oceanic waters (off Fernando de Noronha archipelago and Rocas Atoll) in September and October 2015. Zooplankton was sieved into five size fractions. Zooplankton was dominated by copepods, except for the largest (> 2000 mu m) size fraction, that showed a high biovolume of chaetognaths, decapods, and fish larvae. Maximum zooplankton abundance and biovolume was found at the continental slope. POM showed consistently lower delta C-13 than zooplankton, indicating a selective use of C-13-rich primary food sources by zooplankton. Particulate organic matter (POM) was more C-13-enriched in shelf areas (average: -22.8, -23.6 and -24.3% at the shelf, slope and oceanic islands, respectively), probably due to the higher abundance of diatoms nearshore. POM had delta N-15 values between 2.5 and 6.9% (average: 4.0, 4.9 and 4.2% at the shelf, slope and oceanic islands, respectively). Zooplankton delta N-15 and TL increased with body size. The delta N-15 of the 200-500 mu m size fraction was used as baseline for TL estimation. Oceanic areas (average baseline delta N-15 = 5.8% +/- 0.52, n = 14) showed a higher baseline delta N-15 than the shelf (average = 3.9% +/- 0.69, n = 9) and the slope areas (average = 3.1% +/- 0.93, n = 9). In spite of differing baselines, the delta N-15 data produced a consistent pattern of log-linear increase in TL with increasing size, in all areas. The choice of input trophic enrichment factor (TEF) values only slightly changed the log10 (body size) vs TL slopes, but this choice had a considerable effect on the estimates of predator/prey size ratio (PPSR) and predator/prey mass ratio (PPMR). Using a TEF above 2.3 leads to unrealistic PPSR and PPMR estimates. Overall average slope was 0.59 +/- 0.08 TL mu m(-1) with TEF = 2.3 and 0.42 +/- 0.07 TL mu m(-1) with TEF = 3.2.
|
Arones, K., Grados, D., Ayon, P., & Bertrand, A. (2019). Spatio-temporal trends in zooplankton biomass in the northern Humboldt current system off Peru from 1961-2012. Deep-Sea Res. Part II-Top. Stud. Oceanogr., 169, Unsp-104656.
Résumé: Anchovy (Engraulis ringens) is the most important exploited fish species in the Northern Humboldt Current System (NHCS) off Peru. This species, as well as most other pelagic resources, mainly forage on zooplankton. The NHCS is bottom-up controlled at a variety of scales. Therefore, fish biomass is driven by the abundance of their prey. In this context, we studied the spatiotemporal patterns of zooplankton biomass in the NHCS from 1961-2012. Data were collected with Hensen net all along the Peruvian coast. To transform zooplankton biovolume into biomass we used a regression that was calibrated from 145 zooplankton samples collected during four surveys and, for which, precise information was available on both biovolume and wet weight. The regression model was then applied on a time-series encompassing 158 cruises performed by the Peruvian Institute of the Sea (IMARPE) between 1961 and 2012. We observed a clear multidecadal pattern and two regime shifts, in 1973 and 1992. Maximum biomass occurred between 1961 and 1973 (61.5 g m(-2)). The lowest biomass (17.8 g m(-2)) occurred between 1974 and 1992. Finally, the biomass increased after 1993 (26.6 g m(-2)) but without reaching the levels observed before 1973. A seasonal pattern was observed with significantly more biomass in spring than in other seasons. Spatially, zooplankton biomass was higher offshore and in northern and southern Peru. Interestingly, the zooplankton sampling was performed using classic zooplankton net that are well fitted to mesozooplankton and are known to underestimate the macrozooplankton; however, the spatiotemporal patterns we observed are consistent with those of macrozooplankton, in particular euphausiids. This suggests that in the NHCS, when and where macrozooplankton dominates it also dominates the biomass obtained using classic zooplankton net samples. Finally, until now, in the NHCS only time-series on zooplankton biovolume were available. The biomass data we provide are more directly usable in trophic or end-to-end models.
|