Accueil | << 1 2 >> |
![]() |
Andrello, M., Guilhaumon, F., Albouy, C., Parravicini, V., Scholtens, J., Verley, P., et al. (2017). Global mismatch between fishing dependency and larval supply from marine reserves. Nat. Commun., 8, 16039.
Résumé: Marine reserves are viewed as flagship tools to protect exploited species and to contribute to the effective management of coastal fisheries. Yet, the extent to which marine reserves are globally interconnected and able to effectively seed areas, where fisheries are most critical for food and livelihood security is largely unknown. Using a hydrodynamic model of larval dispersal, we predict that most marine reserves are not interconnected by currents and that their potential benefits to fishing areas are presently limited, since countries with high dependency on coastal fisheries receive very little larval supply from marine reserves. This global mismatch could be reversed, however, by placing new marine reserves in areas sufficiently remote to minimize social and economic costs but sufficiently connected through sea currents to seed the most exploited fisheries and endangered ecosystems.
|
Christensen, V., Coll, M., Buszowski, J., Cheung, W. W. L., Frölicher, T., Steenbeek, J., et al. (2015). The global ocean is an ecosystem: simulating marine life and fisheries. Global Ecology and Biogeography, 24(5), 507–517.
Résumé: Aim There has been considerable effort allocated to understanding the impact of climate change on our physical environment, but comparatively little to how life on Earth and ecosystem services will be affected. Therefore, we have developed a spatial–temporal food web model of the global ocean, spanning from primary producers through to top predators and fisheries. Through this, we aim to evaluate how alternative management actions may impact the supply of seafood for future generations. Location Global ocean. Methods We developed a modelling complex to initially predict the combined impact of environmental parameters and fisheries on global seafood production, and initially evaluated the model's performance through hindcasting. The modelling complex has a food web model as core, obtains environmental productivity from a biogeochemical model and assigns global fishing effort spatially. We tuned model parameters based on Markov chain random walk stock reduction analysis, fitting the model to historic catches. We evaluated the goodness-of-fit of the model to data for major functional groups, by spatial management units and globally. Results This model is the most detailed ever constructed of global fisheries, and it was able to replicate broad patterns of historic fisheries catches with best agreement for the total catches and good agreement for species groups, with more variation at the regional level. Main conclusions We have developed a modelling complex that can be used for evaluating the combined impact of fisheries and climate change on upper-trophic level organisms in the global ocean, including invertebrates, fish and other large vertebrates. The model provides an important step that will allow global-scale evaluation of how alternative fisheries management measures can be used for mitigation of climate change.
|
Leroy, B., Dias, M. S., Giraud, E., Hugueny, B., Jezequel, C., Leprieur, F., et al. (2019). Global biogeographical regions of freshwater fish species. J. Biogeogr., .
Résumé: Aim To define the major biogeographical regions and transition zones for freshwater fish species. Taxon Strictly freshwater species of actinopterygian fish (i.e. excluding marine and amphidromous fish families). Methods We based our bioregionalization on a global database of freshwater fish species occurrences in drainage basins, which, after filtering, includes 11,295 species in 2,581 basins. On the basis of this dataset, we generated a bipartite (basin-species) network upon which we applied a hierarchical clustering algorithm (the Map Equation) to detect regions. We tested the robustness of regions with a sensitivity analysis. We identified transition zones between major regions with the participation coefficient, indicating the degree to which a basin has species from multiple regions. Results Our bioregionalization scheme showed two major supercontinental regions (Old World and New World, 50% species of the world and 99.96% endemics each). Nested within these two supercontinental regions lie six major regions (Nearctic, Neotropical, Palearctic, Ethiopian, Sino-Oriental and Australian) with extremely high degrees of endemism (above 96% except for the Palearctic). Transition zones between regions were of limited extent compared to other groups of organisms. We identified numerous subregions with high diversity and endemism in tropical areas (e.g. Neotropical), and a few large subregions with low diversity and endemism at high latitudes (e.g. Palearctic). Main conclusions Our results suggest that regions of freshwater fish species were shaped by events of vicariance and geodispersal which were similar to other groups, but with freshwater-specific processes of isolation that led to extremely high degrees of endemism (far exceeding endemism rates of other continental vertebrates), specific boundary locations and limited extents of transition zones. The identified bioregions and transition zones of freshwater fish species reflect the strong isolation of freshwater fish faunas for the past 10-20 million years. The extremely high endemism and diversity of freshwater fish fauna raises many questions about the biogeographical consequences of current introductions and extinctions.
|
Marinesque, S., Kaplan, D., & Rodwell, L. D. (2012). Global implementation of marine protected areas : is the developing world being left behind ? Marine Policy, 36(3), 727–737.
Résumé: While the global network of marine protected areas (MPAs) has recently been evaluated in the light of bio-geographic targets, there has been no attempt to evaluate the relative conservation efforts made by the different nations with regards to their level of socio-economic development. Using information mostly gathered from the world database on protected areas (WDPA), this paper gives a comparative assessment of MPA progress in countries from different economic categories, ranging from advanced economies to least developed countries (LDCs). Potentially explanatory socio-economic and environmental factors, such as fishing activity and existence of vulnerable marine ecosystems, for variability between nations in the level of MPA implementation are also explored. Existing MPA databases demonstrate a clear gap between developed and developing nations in MPA establishment, with advanced economies accounting for two thirds of the global MPA network. Patterns of MPA use, however, remain extremely heterogeneous between countries within each development group. International agreements on marine conservation, above and beyond the influence of country socioeconomic and environmental profiles, are identified as a stimulating factor to MPA implementation. The level dependence on marine resource extraction appears to impede MPA implementation, though the relationship is not statistically significant due to large heterogeneity among countries. Leading developed nations increasingly use MPAs to designate integrated and adaptive management areas, and implementation of large “no-take” reserves in relatively-pristine overseas areas continues to accelerate. These analyses highlight certain limitations regarding our ability to assess the true conservation effectiveness of the existing global MPA network and the need for improved indicators of MPA restrictions and management efforts.
|
Reygondeau, G., Guidi, L., Beaugrand, G., Henson, S. A., Koubbi, P., MacKenzie, B. R., et al. (2018). Global biogeochemical provinces of the mesopelagic zone. J. Biogeogr., 45(2), 500–514.
Résumé: Aim: Following the biogeographical approach implemented by Longhurst for the epipelagic layer, we propose here to identify a biogeochemical 3-D partition for the mesopelagic layer. The resulting partition characterizes the main deep environmental biotopes and their vertical boundaries on a global scale, which can be used as a geographical and ecological framework for conservation biology, ecosystem-based management and for the design of oceanographic investigations. Location: The global ocean. Methods: Based on the most comprehensive environmental climatology available to date, which is both spatially and vertically resolved (seven environmental parameters), we applied a combination of clustering algorithms (c-means, k-means, partition around medoids and agglomerative with Ward's linkage) associated with a nonparametric environmental model to identify the vertical and spatial delineation of the mesopelagic layer. Results: First, we show via numerical interpretation that the vertical division of the pelagic zone varies and, hence, is not constant throughout the global ocean. Indeed, a latitudinal gradient is found between the epipelagic-mesopelagic and mesopelagic-bathypelagic vertical limits. Second, the mesopelagic layer is shown here to be composed of 13 distinguishable Biogeochemical Provinces. Each province shows a distinct range of environmental conditions and characteristic 3-D distributions. Main conclusions: The historical definition of the mesopelagic zone is here revisited to define a 3-D geographical framework and characterize all the deep environmental biotopes of the deep global ocean. According to the numerical interpretation of mesopelagic boundaries, we reveal that the vertical division of the zone is not constant over the global ocean (200-1,000 m) but varies between ocean basin and with latitude. We also provide evidence of biogeochemical division of the mesopelagic zone that is spatially structured in a similar way than the epipelagic in the shallow waters but varies in the deep owing to a change of the environmental driving factors.
|