|
D'agata, S., Mouillot, D., Wantiez, L., Friedlander, A. M., Kulbicki, M., & Vigliola, L. (2016). Marine reserves lag behind wilderness in the conservation of key functional roles. Nat. Commun., 7, 12000.
Résumé: Although marine reserves represent one of the most effective management responses to human impacts, their capacity to sustain the same diversity of species, functional roles and biomass of reef fishes as wilderness areas remains questionable, in particular in regions with deep and long-lasting human footprints. Here we show that fish functional diversity and biomass of top predators are significantly higher on coral reefs located at more than 20 h travel time from the main market compared with even the oldest (38 years old), largest (17,500 ha) and most restrictive (no entry) marine reserve in New Caledonia (South-Western Pacific). We further demonstrate that wilderness areas support unique ecological values with no equivalency as one gets closer to humans, even in large and well-managed marine reserves. Wilderness areas may therefore serve as benchmarks for management effectiveness and act as the last refuges for the most vulnerable functional roles.
|
|
|
Mouillot, D., Parravicini, V., Bellwood, D. R., Leprieur, F., Huang, D., Cowman, P. F., et al. (2016). Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat. Commun., 7, 10359.
Résumé: Although coral reefs support the largest concentrations of marine biodiversity worldwide, the extent to which the global system of marine-protected areas (MPAs) represents individual species and the breadth of evolutionary history across the Tree of Life has never been quantified. Here we show that only 5.7% of scleractinian coral species and 21.7% of labrid fish species reach the minimum protection target of 10% of their geographic ranges within MPAs. We also estimate that the current global MPA system secures only 1.7% of the Tree of Life for corals, and 17.6% for fishes. Regionally, the Atlantic and Eastern Pacific show the greatest deficit of protection for corals while for fishes this deficit is located primarily in the Western Indian Ocean and in the Central Pacific. Our results call for a global coordinated expansion of current conservation efforts to fully secure the Tree of Life on coral reefs.
|
|
|
Teixido, N., Gambi, M. C., Parravacini, V., Kroeker, K., Micheli, F., Villeger, S., et al. (2018). Functional biodiversity loss along natural CO2 gradients. Nat. Commun., 9, 5149.
Résumé: The effects of environmental change on biodiversity are still poorly understood. In particular, the consequences of shifts in species composition for marine ecosystem function are largely unknown. Here we assess the loss of functional diversity, i.e. the range of species biological traits, in benthic marine communities exposed to ocean acidification (OA) by using natural CO2 vent systems. We found that functional richness is greatly reduced with acidification, and that functional loss is more pronounced than the corresponding decrease in taxonomic diversity. In acidified conditions, most organisms accounted for a few functional entities (i.e. unique combination of functional traits), resulting in low functional redundancy. These results suggest that functional richness is not buffered by functional redundancy under OA, even in highly diverse assemblages, such as rocky benthic communities.
|
|
|
McLean, M., Auber, A., Graham, N. A. J., Houk, P., Villeger, S., Violle, C., et al. (2019). Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob. Change Biol., 25(10), 3424–3437.
Résumé: Trait diversity is believed to influence ecosystem dynamics through links between organismal traits and ecosystem processes. Theory predicts that key traits and high trait redundancy-large species richness and abundance supporting the same traits-can buffer communities against environmental disturbances. While experiments and data from simple ecological systems lend support, large-scale evidence from diverse, natural systems under major disturbance is lacking. Here, using long-term data from both temperate (English Channel) and tropical (Seychelles Islands) fishes, we show that sensitivity to disturbance depends on communities' initial trait structure and initial trait redundancy. In both ecosystems, we found that increasing dominance by climatically vulnerable traits (e.g., small, fast-growing pelagics/corallivores) rendered fish communities more sensitive to environmental change, while communities with higher trait redundancy were more resistant. To our knowledge, this is the first study demonstrating the influence of trait structure and redundancy on community sensitivity over large temporal and spatial scales in natural systems. Our results exemplify a consistent link between biological structure and community sensitivity that may be transferable across ecosystems and taxa and could help anticipate future disturbance impacts on biodiversity and ecosystem functioning.
|
|
|
Carvalho, P. G., Jupiter, S. D., Januchowski-Hartley, F. A., Goetze, J., Claudet, J., Weeks, R., et al. (2019). Optimized fishing through periodically harvested closures. J. Appl. Ecol., 56(8), 1927–1936.
Résumé: Periodically harvested closures are a widespread, centuries-old form of fisheries management that protects fish between pulse harvests and can generate high harvest efficiency by reducing fish wariness of fishing gear. However, the ability for periodic closures to also support high fisheries yields and healthy marine ecosystems is uncertain, despite increased promotion of periodic closures for managing fisheries and conserving ecosystems in the Indo-Pacific. We developed a bioeconomic fisheries model that considers changes in fish wariness, based on empirical field research, and quantified the extent to which periodic closures can simultaneously maximize harvest efficiency, fisheries yield and conservation of fish stocks. We found that periodic closures with a harvest schedule represented by closure for one to a few years between a single pulse harvest event can generate equivalent fisheries yield and stock abundance levels and greater harvest efficiency than achievable under conventional fisheries management with or without a permanent closure. Optimality of periodic closures at maximizing the triple objective of high harvest efficiency, high fisheries yield, and high stock abundance was robust to fish life history traits and to all but extreme levels of overfishing. With moderate overfishing, there emerged a trade-off between periodic closures that maximized harvest efficiency and no-take permanent closures that maximized yield; however, the gain in harvest efficiency outweighed the loss in yield for periodic closures when compared with permanent closures. Only with extreme overfishing, where fishing under nonspatial management would reduce the stock to <= 18% of its unfished level, was the harvest efficiency benefit too small for periodic closures to best meet the triple objective compared with permanent closures. Synthesis and applications. We show that periodically harvested closures can, in most cases, simultaneously maximize harvest efficiency, fisheries yield, and fish stock conservation beyond that achievable by no-take permanent closures or nonspatial management. Our results also provide design guidance, indicating that short closure periods between pulse harvest events are most appropriate for well-managed fisheries or areas with large periodic closures, whereas longer closure periods are more appropriate for small periodic closure areas and overfished systems.
|
|