|
Abadie, E., Muguet, A., Berteaux, T., Chomérat, N., Hess, P., ROQUE D'ORBCASTEL, E., et al. (2016). Toxin and Growth Responses of the Neurotoxic Dinoflagellate Vulcanodinium rugosum to Varying Temperature and Salinity. Toxins, 8(5), 136.
Résumé: Vulcanodinium rugosum, a recently described species, produces pinnatoxins. The IFR-VRU-01 strain, isolated from a French Mediterranean lagoon in 2010 and identified as the causative dinoflagellate contaminating mussels in the Ingril Lagoon (French Mediterranean) with pinnatoxin-G, was grown in an enriched natural seawater medium. We tested the effect of temperature and salinity on growth, pinnatoxin-G production and chlorophyll a levels of this dinoflagellate. These factors were tested in combinations of five temperatures (15, 20, 25, 30 and 35 °C) and five salinities (20, 25, 30, 35 and 40) at an irradiance of 100 µmol photon m−2 s−1. V. rugosum can grow at temperatures and salinities ranging from 20 °C to 30 °C and 20 to 40, respectively. The optimal combination for growth (0.39 ± 0.11 d−1) was a temperature of 25 °C and a salinity of 40. Results suggest that V. rugosum is euryhaline and thermophile which could explain why this dinoflagellate develops in situ only from June to September. V. rugosum growth rate and pinnatoxin-G production were highest at temperatures ranging between 25 and 30 °C. This suggests that the dinoflagellate may give rise to extensive blooms in the coming decades caused by the climate change-related increases in temperature expected in the Mediterranean coasts.
|
|
|
Ben Gharbia, H., Laabir, M., Ben Mhamed, A., Gueroun, S. K. M., Yahia, M. N. D., Nouri, H., et al. (2019). Occurrence of epibenthic dinoflagellates in relation to biotic substrates and to environmental factors in Southern Mediterranean (Bizerte Bay and Lagoon, Tunisia): An emphasis on the harmful Ostreopsis spp., Prorocentrum lima and Coolia monotis. Harmful Algae, 90, 101704.
Résumé: Harmful events associated with epibenthic dinoflagellates, have been reported more frequently over the last decades. Occurrence of potentially toxic benthic dinoflagellates, on the leaves of two magnoliophytes (Cymodocea nodosa and Zostera noltei) and thalli of the macroalgae (Ulva rigida), was monitored over one year (From May 2015 to April 2016) in the Bizerte Bay and Lagoon (North of Tunisia, Southern Mediterranean Sea). The investigated lagoon is known to be highly anthropized. This is the first report on the seasonal distribution of epibenthic dinoflagellates hosted by natural substrates, from two contrasted, adjacent coastal Mediterranean ecosystems. The environmental factors promoting the development of the harmful epibenthic dinoflagellates Ostreopsis spp., Prorocentrum lima and Coolia monotis were investigated. The highest cell densities were reached by Ostreopsis spp. (1.9 x 10(3) cells g(-1) FW, in October 2015), P. lima (1.6 x 10(3) cells g(-1) FW, in June 2015) and C. monotis (1.1 x 10(3) cells g(-1) FW, in May 2015). C. nodosa and Z. noltei were the most favorable host macrophytes for C. monotis (in station L2) and Ostreopsis spp. (in station L3), respectively. Positive correlations were recorded between Ostreopsis spp. and temperature. Densities of the epibenthic dinoflagellates varied according to the collection site, and a great disparity was observed between the Bay and the Lagoon. Maximum concentrations were recorded on C. nodosa leaves from the Bizerte Bay, while low epiphytic cell abundances were associated with macrophytes sampled from the Bizerte Lagoon. The observed differences in dinoflagellate abundances between the two ecosystems (Bay-Lagoon) seemed not related to the nutrients, but rather to the poor environmental conditions in the lagoon.
|
|
|
Caruana, A. M. N., Le Gac, M., Herve, F., Rovillon, G. - A., Geffroy, S., Malo, F., et al. (2020). Alexandrium pacificum and Alexandrium minutum: Harmful or environmentally friendly? Mar. Environ. Res., 160, 105014.
Résumé: Alexandrium minutum and Alexandrium pacificum are representatives of the dinoflagellate genus that regularly proliferate on the French coasts and other global coastlines. These harmful species may threaten shellfish harvest and human health due to their ability to synthesize neurotoxic alkaloids of the saxitoxin group. However, some dinoflagellates such as A. minutum, and as reported here A. pacificum as well, may also have a beneficial impact on the environment by producing dimethylsulfoniopropionate-DMSP, the precursor of dimethylsulfur-DMS and sulfate aerosols involved in climate balance. However, environmental conditions might influence Alexandrium physiology towards the production of harmful or environmentally friendly compounds. After assessing the influence of two salinity regimes (33 and 38) relative to each species origin (Atlantic French coast and Mediterranean Lagoon respectively), it appears that DMSP and toxin content was variable between the three experimented strains and that higher salinity disadvantages toxin production and tends to favor the production of the osmolytes DMSP and glycine betaine. Hence, this key metabolite production is strain and species-dependent and is influenced by environmental conditions of salinity which in turn, can diversely affect the environment. Widespread coastal blooms of A. minutum and A. pacificum, although being a risk for seafood contamination with toxins, are also a DMSP and DMS source that potentially contribute to the ecosystem structuration and climate. Regarding recent advances in DMSP biosynthesis pathway, 3 dsyB homologs were found in A. minutum but no homolog of the diatom sequence TpMMT.
|
|
|
Duval, C., Thomazeau, S., Drelin, Y., Yepremian, C., Bouvy, M., Couloux, A., et al. (2018). Phylogeny and salt-tolerance of freshwater Nostocales strains: Contribution to their systematics and evolution. Harmful Algae, 73, 58–71.
Résumé: Phylogenetic relationships among heterocytous genera (the Nostocales order) have been profoundly modified since the use of polyphasic approaches that include molecular data. There is nonetheless still ample scope for improving phylogenetic delineations of genera with broad ecological distributions, particularly by integrating specimens from specific or up-to-now poorly sampled habitats. In this context, we studied 36 new isolates belonging to Chrysosporum, Dolichospermum, Anabaena, Anabaenopsis, and Cylindrospermopsis from freshwater ecosystems of Burkina-Faso, Senegal, and Mayotte Island. Studying strains from these habitats is of particular interest as we suspected different range of salt variations during underwent periods of drought in small ponds and lakes. Such salt variation may cause different adaptation to salinity. We then undertook a polyphasic approach, combining molecular phylogenies, morphological analyses, and physiological measurements of tolerance to salinity. Molecular phylogenies of 117 Nostocales sequences showed that the 36 studied strains were distributed in seven lineages: Dolichospermum, Chrysosporum, Cylindrospermopsis Raphidiopsis, Anabaenopsis, Anabaena sphaerica var tenuis/Sphaerospermopsis, and two independent Anabaena sphaerica lineages. Physiological data were congruent with molecular results supporting the separation into seven lineages. In an evolutionary context, salinity tolerance can be used as an integrative marker to reinforce the delineation of some cyanobacterial lineages. The history of this physiological trait contributes to a better understanding of processes leading to the divergence of cyanobacteria. In this study, most of the cyanobacterial strains isolated from freshwater environments were salt-tolerant, thus suggesting this trait constituted an ancestral trait of the heterocytous cyanobacteria and that it was probably lost two times secondarily and independently in the ancestor of Dolichospermum and of Cylindrospermopsis. (C) 2018 Elsevier B.V. All rights reserved.
|
|