|
Alfonso, S., Sadoul, B., Cousin, X., & Begout, M. - L. (2020). Spatial distribution and activity patterns as welfare indicators in response to water quality changes in European sea bass, Dicentrarchus labrax. Appl. Anim. Behav. Sci., 226, Unsp-104974.
Résumé: In aquaculture, fish are exposed to unavoidable stressors that can be detrimental for their health and welfare. However, welfare in farmed fish can be difficult to assess, and, so far, no standardized test has been universally accepted as a welfare indicator. This work contributes to the establishment of behavioural welfare indicators in a marine teleost in response to different water quality acute stressors. Groups of ten fish were exposed to high Total Ammonia Nitrogen concentration (High TAN, 18 mg.L-1), Hyperoxia (200 % O-2 saturation), Hypoxia (20 % O-2 saturation), or control water quality (100% O-2 saturation and TAN < 2.5 mg.L-1) over 1 hour. Fish were then transferred in a novel environment for a group behaviour test under the same water quality conditions over 2 hours. Videos were recorded to assess thigmotaxis, activity and group cohesion. After this challenge, plasma cortisol concentration was measured in a subsample, while individual behavioural response was measured in the other fish using novel tank diving test. Prior to this study, the novel tank diving test was validated as a behavioural challenge indicative of anxiety state, by using nicotine as anxiolytic drug. Overall, all stress conditions induced a decrease in activity and thigmotaxis and changes in group cohesion while only fish exposed to Hypoxia and High TAN conditions displayed elevated plasma cortisol concentrations. In post-stress condition, activity was still affected but normal behaviour was recovered within the 25 minutes of the test duration. Our work suggests that the activity, thigmotaxis and group cohesion are good behavioural indicators of exposure to degraded water quality, and could be used as standardized measures to assess fish welfare.
|
|
|
Ben Othman, H., Lanouguère, É., Got, P., Sakka Hlaili, A., & Leboulanger, C. (2018). Structural and functional responses of coastal marine phytoplankton communities to PAH mixtures. Chemosphere, 209, 908–919.
Résumé: The toxicity of polycyclic aromatic hydrocarbons (PAHs) mixtures was evaluated on natural phytoplankton communities sampled from lagoons of Bizerte (South-western Mediterranean Sea) and Thau (North-western Mediterranean Sea). PAHs induced short-term dose and ecosystem-dependant decreases in photosynthetic potential. Chlorophyll a was negatively affected by increasing PAHs concentrations, together with dramatic changes in phytoplankton community composition. Size classes were strongly affected in the Bizerte compare to the Thau lagoon, with a decrease in nano- and microphytoplankton densities compare to picophytoplankton. In both locations, the diatom Entomoneis paludosa appeared favoured under PAH exposure as evidenced by increase in cell density, whereas autotrophic flagellates and dinophytes were strongly reduced. Smaller cells were more tolerant to exposure to highest PAHs concentrations, with persistent picophytoplankton carbon biomass at the end of the incubations. Apparent recovery of photosynthetic potential, accompanied with a regrowth of chlorophyll a under the lowest PAH doses, coincided with a significantly altered community composition in both lagoons. Furthermore, sensitivity to PAHs was not related to the phytoplankton cell size, and toxicity-induced modification of top-down control by grazers during the experiment cannot be excluded.
|
|
|
Ben Othman, H., Leboulanger, C., Le Floc'h, E., Mabrouk, H. H., & Hlaili, A. S. (2012). Toxicity of benz(a)anthracene and fluoranthene to marine phytoplankton in culture: Does cell size really matter? J. Hazard. Mater., 243, 204–211.
Résumé: The toxicity of benz(a)anthracene and fluoranthene (polycyclic aromatic hydrocarbons, PAHs) was evaluated on seven species of marine algae in culture belonging to pico-, nano-, and microphytoplankton, exposed to increasing concentrations of up to 2 mg L-1. The short-term (24 h) toxicity was assessed using chlorophyll a fluorescence transients, linked to photosynthetic parameters. The maximum quantum yield Fv/Fm was lower at the highest concentrations tested and the toxicity thresholds were species-dependent. For acute effects, fluoranthene was more toxic than benz(a)anthracene, with LOECs of 50.6 and 186 mu g L-1, respectively. After 72 h exposure, there was a dose-dependent decrease in cell density, fluoranthene being more toxic than benz(a)anthracene. The population endpoint at 72 h was affected to a greater extent than the photosynthetic endpoint at 24 h. EC50 was evaluated using the Hill model, and species sensitivity was negatively correlated to cell biovolume. The largest species tested, the dinoflagellate Alexandrium catenella, was almost insensitive to either PAH. The population endpoint EC50s for fluoranthene varied from 54 mu g L-1 for the picophytoplankton Picochlorum sp. to 418 mu g L-1 for the larger diatom Chaetoceros muelleri. The size/sensitivity relationship is proposed as a useful model when there is a lack of ecotoxicological data on hazardous chemicals, especially in marine microorganisms. (C) 2012 Elsevier B.V. All rights reserved.
|
|
|
Ben Ouada, S., Ben Ali, R., Leboulanger, C., Ben Ouada, H., & Sayadi, S. (2018). Effect of Bisphenol A on the extremophilic microalgal strain Picocystis sp. (Chlorophyta) and its high BPA removal ability. Ecotoxicology and Environmental Safety, 158, 1–8.
Résumé: Bisphenol A (BPA) effects and removal by an alkaliphilic chlorophyta, Picocystis, were assessed. BPA at low concentrations (0–25 mg L−1) did not inhibit the Picocystis growth and photosynthesis during 5 days of exposure. At higher BPA concentrations (50 and 75 mg L−1), the growth inhibition did not exceed 43%. The net photosynthetic activity was dramatically reduced at high BPA concentrations while, the PSII activity was less affected. The exposure to increasing BPA concentrations induced an oxidative stress in Picocystis cells, as evidenced by increased malondialdehyde content and the over-expression of antioxidant activities (ascorbate peroxydase, gluthation-S-transferase and catalase). Picocystis exhibited high BPA removal efficiency, reaching 72% and 40% at 25 and 75 mg L−1 BPA. BPA removal was ensured mainly by biodegradation/biotransformation processes. Based on these results, the extended tolerance and the high removal ability of Picocystis make her a promising specie for use in BPA bioremediation.
|
|
|
Ben-Gharbia, H., Yahia, O. K. - D., Amzil, Z., Chomerat, N., Abadie, E., Masseret, E., et al. (2016). Toxicity and Growth Assessments of Three Thermophilic Benthic Dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima and Coolia monotis) Developing in the Southern Mediterranean Basin. Toxins, 8(10), 297.
Résumé: Harmful benthic dinoflagellates, usually developing in tropical areas, are expanding to temperate ecosystems facing water warming. Reports on harmful benthic species are particularly scarce in the Southern Mediterranean Sea. For the first time, three thermophilic benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima and Coolia monotis) were isolated from Bizerte Bay (Tunisia, Mediterranean) and monoclonal cultures established. The ribotyping confirmed the morphological identification of the three species. Maximum growth rates were 0.59 +/- 0.08 d(-1) for O. cf. ovata, 0.35 +/- 0.01 d(-1) for C. monotis and 0.33 +/- 0.04 d(-1) for P. lima. Toxin analyses revealed the presence of ovatoxin-a and ovatoxin-b in O. cf. ovata cells. Okadaic acid and dinophysistoxin-1 were detected in P. lima cultures. For C. monotis, a chromatographic peak at 5.6 min with a mass m/z = 1061.768 was observed, but did not correspond to a mono-sulfated analogue of the yessotoxin. A comparison of the toxicity and growth characteristics of these dinoflagellates, distributed worldwide, is proposed.
|
|