|
Mérigot, B., Frédou, F. L., Viana, A. P., Ferreira, B. P., do Nascimento Costa Junior, E., Beserra da Silva Júnior, C. A., et al. (2017). Fish assemblages in tropical estuaries of northeast Brazil: A multi-component diversity approach. Ocean & Coastal Management, 143, 175–183.
Résumé: Biodiversity in estuarine ecosystems suffers from the impact of environmental changes and human activities. This mainly involves changes in temperature, salinity, pollution, habitat degradation or loss and fishing activities. The diversity of species communities is traditionally assessed on the basis of their species richness and composition. However, there is growing interest in taking into account complementary components dealing with species differences (e.g. taxonomic relatedness). In spite of their social, ecological and economic importance, the diversity of tropical estuarine fish assemblages has rarely been monitored by means of a multi-component approach under different human pressure and environmental conditions. We analysed the diversity of exploited fish communities (both target and non-target species) sampled during scientific surveys within four estuarine complexes in the state of Pernambuco, Brazil: Itapissuma, Suape, Sirinhaém, and Rio Formoso. A total of 122 species were collected within 34 samples. Overall, diversity indices and species models fitting dominance-evenness profiles mainly revealed differences between assemblages from Itapissuma, being the largest estuary with wide areas of mangrove, and the other estuaries. While assemblages from Itapissuma generally encompassed more species and individuals than the other estuaries, species were more closely related from a taxonomic point of view. In addition, a Double Principal Coordinate Analysis (DPCoA) established a typology of assemblages, useful for management purposes, and linked to particular fish families: it highlighted differences between Itapissuma, Suape, Sirinhaém and Rio Formoso. This method combines matrices of species abundances and differences (here taxonomic distances according to the Linnean classification). It was particularly accurate with a first factorial plane explaining 73% of the total inertia, while only 17% was achieved by a traditional Principal Component Analysis (PCA). Overall, this study provides an assessment of the state of fish assemblage diversity in Pernambuco estuaries where contrasted human and environmental conditions occur. It underscores the accuracy of using a multi-component diversity approach, with a multivariate analysis that is not yet widely used, for monitoring the diversity of estuaries for ecosystem-based fisheries management purposes.
|
|
|
Leruste, A., Villeger, S., Malet, N., De Wit, R., & Bec, B. (2018). Complementarity of the multidimensional functional and the taxonomic approaches to study phytoplankton communities in three Mediterranean coastal lagoons of different trophic status. Hydrobiologia, 815(1), 207–227.
Résumé: We used the individual-based multidimensional functional diversity and the taxonomic approaches in a complementary way to describe phytoplankton communities in three coastal lagoons with different eutrophication status in the South of France. We sampled communities during three seasons, i.e., in autumn, spring, and summer. Using classical taxonomy, 107 taxa/morphotypes were identified in the nine communities. The individual-based functional approach allowed grouping these individuals into 20 functional entities according to their values for 5 traits related to trophic adaptations (cell size, mobility, trophic regime, coloniality, and pelagic/benthic life). Some species (e.g., Prorocentrum micans) emerged in multiple functional entities, showing the importance to consider intraspecific variability. The functional description of phytoplankton communities better reflected the hydrological functioning and the different eutrophication status of the lagoons than the taxonomic approach. Specific functional adaptations were identified in the nine communities. For example, phytoplankton organisms with heterotrophic and potentially mixotrophic abilities occurred when the availability of inorganic nutrient decreased, or when organic matter and small preys were potentially the main nutrient resources. The limitation has also favored small cells highly competitive for nutrients. Using functional indices together with taxonomic description has also helped revealing important aspects of community assembly, such as competitive exclusion in summer.
|
|
|
Guilhaumon, F., Albouy, C., Claudet, J., Velez, L., Ben Rais Lasram, F., Tomasini, J. - A., et al. (2015). Representing taxonomic, phylogenetic and functional diversity: new challenges for Mediterranean marine-protected areas. Diversity Distrib., 21(2), 175–187.
Résumé: Aim To assess gaps in the representation of taxonomic, phylogenetic and functional diversity among coastal fishes in Mediterranean marine-protected areas (MPAs). Location Mediterranean Sea. Methods We first assessed gaps in the taxonomic representation of the 340 coastal fish species in Mediterranean MPAs, with representation targets (the species range proportion to be covered by MPAs) set to be inversely proportional to species' range sizes. We then asked whether MPAs favoured representation of phylogenetically and functionally more distinct species or whether there was a tendency to favour less distinctive ones. We finally evaluated the overall conservation effectiveness of the MPAs using a metric that integrates species' phylogenetic and functional relationships and targets achievement. The effectiveness of the MPA system at protecting biodiversity was assessed by comparison of its achievements against a null model obtained by siting current MPAs at random over the study area. Results Among the coastal fish species analysed, 16 species were not covered by any MPA. All the remaining species only partially achieved the pre-defined representation target. The current MPA system missed fewer species than expected from siting MPAs at random. However, c. 70% of the species did not achieve better protection in the current MPAs than expected from siting MPAs at random. Functional and evolutionary distinctiveness were weakly correlated with target achievement. The observed coverage of taxonomic, phylogenetic and functional diversity was not different or lower than expected from siting MPAs at random. Main conclusions The Mediterranean MPA system falls short in meeting conservation targets for coastal fish taxonomic diversity, phylogenetic diversity and functional diversity. Mediterranean MPAs do not encompass more biodiversity than expected by chance. This study reveals multiple ongoing challenges and calls for regional collaboration for the extension of the Mediterranean system of MPAs to meet international commitments and reduce the ongoing loss of marine biodiversity.
|
|
|
Albouy, C., Lasram, F. B. R., Velez, L., Guilhaumon, F., Meynard, C. N., Boyer, S., et al. (2015). FishMed: traits, phylogeny, current and projected species distribution of Mediterranean fishes, and environmental data. Ecology, 96(8), 2312–2313.
Résumé: The FishMed database provides traits, phylogeny, current and projected species distribution of Mediterranean fishes, and associated sea surface temperature (SST) from the regional oceanic model NEMOMED8. Data for the current geographical distributions of 635 Mediterranean fish species were compiled from a published expert knowledge atlas of fishes of the northern Atlantic and the Mediterranean (FNAM) edited between 1984 and 1986 and from an updated exotic fish species list. Two future sets of projected species distributions were obtained for the middle and end of the 21st century by using an ensemble forecasting approach for 288 coastal Mediterranean fish species based on SST according to the IPPC/SRES A2 scenario implemented with the Mediterranean climatic model NEMOMED8. The functional part of the database encompasses 12 biological and ecological traits (maximal and common lengths, vertical distribution, habitat, migration type, mode of reproduction, sex shift, semelparity, diet type (larvae and adults), social behavior, species origin, and depth) for the 635 fish species. To build the phylogeny we inferred the timing and geographic origins of Mediterranean teleost species diversity using nucleotide sequences collected from GenBank including 62% of Mediterranean teleost species plus nine outgroups. Maximum likelihood Bayesian phylogenetic and dating analyses were calibrated using 20 fossil species. An additional 124 fish species were grafted onto the chronogram according to their taxonomic affinity to obtain a phylogenetic tree including 498 species. Finally we also present the associated SST data for the observed period (1961–1980) and for the middle (2040–2059) and the end of the 21st century (2080–2099) obtained from NEMOMED8 according to the IPCC A2 scenario. The FishMed database might be of interest in the context of global anthropogenic changes as coastal Mediterranean ecosystems are currently recognized as one of the most impacted ecosystems on earth.
|
|