Accueil | << 1 >> |
![]() |
Chiarello, M., Auguet, J. - C., Graham, N. A. J., Claverie, T., Sucre, E., Bouvier, C., et al. (2020). Exceptional but vulnerable microbial diversity in coral reef animal surface microbiomes. Proc. R. Soc. B-Biol. Sci., 287(1927), 20200642.
Résumé: Coral reefs host hundreds of thousands of animal species that are increasingly threatened by anthropogenic disturbances. These animals host microbial communities at their surface, playing crucial roles for their fitness. However, the diversity of such microbiomes is mostly described in a few coral species and still poorly defined in other invertebrates and vertebrates. Given the diversity of animal microbiomes, and the diversity of host species inhabiting coral reefs, the contribution of such microbiomes to the total microbial diversity of coral reefs could be important, yet potentially vulnerable to the loss of animal species. Analysis of the surface microbiome from 74 taxa, including teleost fishes, hard and soft corals, crustaceans, echinoderms, bivalves and sponges, revealed that more than 90% of their prokaryotic phylogenetic richness was specific and not recovered in surrounding plankton. Estimate of the total richness associated with coral reef animal surface microbiomes reached up to 2.5% of current estimates of Earth prokaryotic diversity. Therefore, coral reef animal surfaces should be recognized as a hotspot of marine microbial diversity. Loss of the most vulnerable reef animals expected under present-day scenarios of reef degradation would induce an erosion of 28% of the prokaryotic richness, with unknown consequences on coral reef ecosystem functioning.
|
Leruste, A., Villeger, S., Malet, N., De Wit, R., & Bec, B. (2018). Complementarity of the multidimensional functional and the taxonomic approaches to study phytoplankton communities in three Mediterranean coastal lagoons of different trophic status. Hydrobiologia, 815(1), 207–227.
Résumé: We used the individual-based multidimensional functional diversity and the taxonomic approaches in a complementary way to describe phytoplankton communities in three coastal lagoons with different eutrophication status in the South of France. We sampled communities during three seasons, i.e., in autumn, spring, and summer. Using classical taxonomy, 107 taxa/morphotypes were identified in the nine communities. The individual-based functional approach allowed grouping these individuals into 20 functional entities according to their values for 5 traits related to trophic adaptations (cell size, mobility, trophic regime, coloniality, and pelagic/benthic life). Some species (e.g., Prorocentrum micans) emerged in multiple functional entities, showing the importance to consider intraspecific variability. The functional description of phytoplankton communities better reflected the hydrological functioning and the different eutrophication status of the lagoons than the taxonomic approach. Specific functional adaptations were identified in the nine communities. For example, phytoplankton organisms with heterotrophic and potentially mixotrophic abilities occurred when the availability of inorganic nutrient decreased, or when organic matter and small preys were potentially the main nutrient resources. The limitation has also favored small cells highly competitive for nutrients. Using functional indices together with taxonomic description has also helped revealing important aspects of community assembly, such as competitive exclusion in summer.
|
Tsiola, A., Pitta, P., Fodelianakis, S., Pete, R., Magiopoulos, I., Mara, P., et al. (2016). Nutrient Limitation in Surface Waters of the Oligotrophic Eastern Mediterranean Sea: an Enrichment Microcosm Experiment. Microb Ecol, 71(3), 575–588.
Résumé: The growth rates of planktonic microbes in the pelagic zone of the Eastern Mediterranean Sea are nutrient limited, but the type of limitation is still uncertain. During this study, we investigated the occurrence of N and P limitation among different groups of the prokaryotic and eukaryotic (pico-, nano-, and micro-) plankton using a microcosm experiment during stratified water column conditions in the Cretan Sea (Eastern Mediterranean). Microcosms were enriched with N and P (either solely or simultaneously), and the PO4 turnover time, prokaryotic heterotrophic activity, primary production, and the abundance of the different microbial components were measured. Flow cytometric and molecular fingerprint analyses showed that different heterotrophic prokaryotic groups were limited by different nutrients; total heterotrophic prokaryotic growth was limited by P, but only when both N and P were added, changes in community structure and cell size were detected. Phytoplankton were N and P co-limited, with autotrophic pico-eukaryotes being the exception as they increased even when only P was added after a 2-day time lag. The populations of Synechococcus and Prochlorococcus were highly competitive with each other; Prochlorococcus abundance increased during the first 2 days of P addition but kept increasing only when both N and P were added, whereas Synechococcus exhibited higher pigment content and increased in abundance 3 days after simultaneous N and P additions. Dinoflagellates also showed opportunistic behavior at simultaneous N and P additions, in contrast to diatoms and coccolithophores, which diminished in all incubations. High DNA content viruses, selective grazing, and the exhaustion of N sources probably controlled the populations of diatoms and coccolithophores.
|