|
Mérigot, B., Gaertner, J. C., Brind’Amour, A., Carbonara, P., Esteban, A., Garcia-Ruiz, C., et al. (2019). Stability of the relationships among demersal fish assemblages and environmental-trawling drivers at large spatio-temporal scales in the northern Mediterranean Sea. Scientia Marina, 83, 153–163.
Résumé: Trawling pressure and environmental changes may affect the composition of fish assemblages. Our knowledge on large spatio-temporal patterns of demersal fish composition remains incomplete for the Mediterranean Sea. We investigated (1) the spatio-temporal stability of demersal assemblages, (2) the relationships between these assemblages and potential structuring factors (trawling pressure and environmental conditions) in order to assess the dynamic of the assemblage structure at the scale of the northern Mediterranean Sea. We analysed a dataset of 18062 hauls from 10 to 800 m depth performed annually during the last two decades across 17 Geographical Sub-Areas (GSAs) (MEDITS program). A multi-table analysis (STATICO-CoA) evidenced a strong inter-GSAs stability in the organization of assemblages, with specificities for some GSAs. The most stable structuring factors were linked to combined gradients of chlorophyll a, phytoplancton carbon biomass and temperature, inversely correlated with depth, salinity and nutrient gradients (axis 1 of the STATICO-CoA compromise, 93.74% of the total variability). A common pattern linking the distribution of species to these environmental gradients was evidenced for most of the 17 GSAs. Estimate of trawling pressure showed a minor role in the organization of the assemblages for the spatial scale and years investigated (axis 2, 4.67%).
|
|
|
Rossi, F., Gribsholt, B., Gazeau, F., Di Santo, V., & Middelburg, J. J. (2013). Complex Effects of Ecosystem Engineer Loss on Benthic Ecosystem Response to Detrital Macroalgae. PLoS One, 8(6).
Résumé: Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies the response to macroalgal detrital enrichment of sediment biogeochemical properties, microphytobenthos and macrofauna assemblages. A field manipulative experiment was done on an intertidal sandflat (Oosterschelde estuary, The Netherlands). Lugworms were deliberately excluded from 1x m sediment plots and different amounts of detrital Ulva (0, 200 or 600 g Wet Weight) were added twice. Sediment biogeochemistry changes were evaluated through benthic respiration, sediment organic carbon content and porewater inorganic carbon as well as detrital macroalgae remaining in the sediment one month after enrichment. Microalgal biomass and macrofauna composition were measured at the same time. Macroalgal carbon mineralization and transfer to the benthic consumers were also investigated during decomposition at low enrichment level (200 g WW). The interaction between lugworm exclusion and detrital enrichment did not modify sediment organic carbon or benthic respiration. Weak but significant changes were instead found for porewater inorganic carbon and microalgal biomass. Lugworm exclusion caused an increase of porewater carbon and a decrease of microalgal biomass, while detrital enrichment drove these values back to values typical of lugworm-dominated sediments. Lugworm exclusion also decreased the amount of macroalgae remaining into the sediment and accelerated detrital carbon mineralization and CO2 release to the water column. Eventually, the interaction between lugworm exclusion and detrital enrichment affected macrofauna abundance and diversity, which collapsed at high level of enrichment only when the lugworms were present. This study reveals that in nature the role of this ecosystem engineer may be variable and sometimes have no or even negative effects on stability, conversely to what it should be expected based on current research knowledge.
|
|
|
Toledo, P., Darnaude, A. M., Niklitschek, E. J., Ojeda, V., Voue, R., Leiva, F. P., et al. (2019). Partial migration and early size of southern hake Merluccius australis: a journey between estuarine and oceanic habitats off Northwest Patagonia. ICES J. Mar. Sci., 76(4), 1094–1106.
Résumé: Partial migration is a key adaptive strategy, increasingly observed across multiple taxa. To investigate partial migration and life-cycle diversity of Merluccius australis in northwestern Patagonia, we analysed isotopic (delta C-13, delta O-18) and elemental (B-11, Na-23, Mg-24, Mn-55, Sr-86, Ba-138) compositions of otoliths from juveniles, sub-adults, and adults to identify nursery origins, habitats used, and migratory behaviours of multiple cohorts (1990-2005). Influence of early size upon migration was assessed by comparing back-calculated sizes at demersal recruitment between resident and migratory adults. Although partial migration occurred at both estuarine and oceanic nursery habitats, migratory behaviour was more frequent in fish of estuarine origin (59%) than in fish of oceanic origin (17%). Adults of estuarine origin dominated both estuarine (92%) and oceanic (77%) sampling areas. Although we found no significant differences in size at demersal recruitment between oceanic-resident and oceanic-migratory fish, a strong relationship between size at demersal recruitment and migratory behaviour appeared in fish of estuarine origin, whose probability of migration increased from 5% to 95% as demersal recruitment size increased from 18.8 to 23.6cm. Further research on M. australis life cycle is required to incorporate sub-population processes into the stock assessment and management models being used for this overexploited species.
|
|
|
Walker, T. R., Grant, J., Weise, A. M., McKindsey, C. W., Callier, M. D., & Richard, M. (2014). Influence of suspended mussel lines on sediment erosion and resuspension in Lagune de la Grande Entree, Iles-de-la-Madeleine, Quebec, Canada. Aquaculture, 433, 450–457.
Résumé: Downward fluxes of organically rich biodeposits under suspended mussel lines can cause benthic impacts such as changes in benthic community structure or microbial mat production. Quantifying sediment erosion in these coastal ecosystems is important for understanding how fluxes of organic matter and mussel biodeposits contribute to benthic pelagic coupling. Critical shear velocity (u(crit)*(t)), erosion rates and particle size distributions of resuspended sediment were measured at four stations distributed along a transect perpendicular to a mussel farm in Lagune de la Grande Entree, Iles-de-la-Madeleine (Quebec, Canada). Stations were selected underneath the outer-most mussel line (0 m) and at distances of 15,30 m and at a reference station (500 m) further along the transect. Shear velocity was measured using a calibrated portable Particle Erosion Simulator, also referred to as the BEAST (Benthic Environmental Assessment Sediment Tool). Undisturbed sediment cores obtained by divers were exposed to shear stress to compare differences between stations. Erosion sequences indicated no significant differences in u(crit)* between stations, but there were significant differences in erosion rates beneath mussel lines compared to other stations. Erosion rates were the highest in cores from beneath mussel lines, but paradoxically had the lowest u(crit)* Mean erosion rates at u*crit varied between 25 and 47 g m(-2) min(-1) and critical erosion thresholds varied between 1.58 and 1.73 cm s(-1), which compare with intensive mussel culture sites elsewhere in eastern Canada. Significant differences existed in biotic and abiotic properties of sediments which could explain variation in maximum erosion rates within and between stations. Particle sizes measured by videography of resuspended sediment at different shear velocities ranged from 02 to 3.0 mm. Quantifying sediment erosion from intact marine sediments helps to improve our mechanistic understanding of these processes, and the BEAST further contributes to predictive capability in benthic pelagic coupling modeling. (C) 2014 Elsevier B.V. All rights reserved.
|
|