|
Barneche, D. R., Rezende, E. L., Parravicini, V., Maire, E., Edgar, G. J., Stuart-Smith, R. D., et al. (2019). Body size, reef area and temperature predict global reef-fish species richness across spatial scales. Glob. Ecol. Biogeogr., 28(3), 315–327.
Résumé: Aim To investigate biotic and abiotic correlates of reef-fish species richness across multiple spatial scales. Location Tropical reefs around the globe, including 485 sites in 109 sub-provinces spread across 14 biogeographic provinces. Time period Present. Major taxa studied 2,523 species of reef fish. Methods We compiled a database encompassing 13,050 visual transects. We used hierarchical linear Bayesian models to investigate whether fish body size, reef area, isolation, temperature, and anthropogenic impacts correlate with reef-fish species richness at each spatial scale (i.e., sites, sub-provinces, provinces). Richness was estimated using coverage-based rarefaction. We also tested whether species packing (i.e., transect-level species richness/m(2)) is correlated with province-level richness. Results Body size had the strongest effect on species richness across all three spatial scales. Reef area and temperature were both positively correlated with richness at all spatial scales. At the site scale only, richness decreased with reef isolation. Species richness was not correlated with proxies of human impacts. Species packing was correlated with species richness at the province level following a sub-linear power function. Province-level differences in species richness were also mirrored by patterns of body size distribution at the site scale. Species-rich provinces exhibited heterogeneous assemblages of small-bodied species with small range sizes, whereas species-poor provinces encompassed homogeneous assemblages composed by larger species with greater dispersal capacity. Main conclusions Our findings suggest that body size distribution, reef area and temperature are major predictors of species richness and accumulation across scales, consistent with recent theories linking home range to species-area relationships as well as metabolic effects on speciation rates. Based on our results, we hypothesize that in less diverse areas, species are larger and likely more dispersive, leading to larger range sizes and less turnover between sites. Our results indicate that changes in province-level (i.e., regional) richness should leave a tractable fingerprint in local assemblages, and that detailed studies on local-scale assemblage composition may be informative of responses occurring at larger scales.
|
|
|
Hattab, T., Albouy, C., Lasram, F. B. R., Somot, S., Le Loc'h, F., & Leprieur, F. (2014). Towards a better understanding of potential impacts of climate change on marine species distribution: a multiscale modelling approach. Global Ecology and Biogeography, 23(12), 1417–1429.
Résumé: Aim In this paper, we applied the concept of ‘hierarchical filters’ in community ecology to model marine species distribution at nested spatial scales. Location Global, Mediterranean Sea and the Gulf of Gabes (Tunisia). Methods We combined the predictions of bioclimatic envelope models (BEMs) and habitat models to assess the current distribution of 20 exploited marine species in the Gulf of Gabes. BEMs were first built at a global extent to account for the full range of climatic conditions encountered by a given species. Habitat models were then built using fine-grained habitat variables at the scale of the Gulf of Gabes. We also used this hierarchical filtering approach to project the future distribution of these species under both climate change (the A2 scenario implemented with the Mediterranean climatic model NEMOMED8) and habitat loss (the loss of Posidonia oceanica meadows) scenarios. Results The hierarchical filtering approach predicted current species geographical ranges to be on average 56% smaller than those predicted using the BEMs alone. This pattern was also observed under the climate change scenario. Combining the habitat loss and climate change scenarios indicated that the magnitude of range shifts due to climate change was larger than from the loss of P. oceanica meadows. Main conclusions Our findings emphasize that BEMs may overestimate current and future ranges of marine species if species–habitat relationships are not also considered. A hierarchical filtering approach that accounts for fine-grained habitat variables limits the uncertainty associated with model-based recommendations, thus ensuring their outputs remain applicable within the context of marine resource management.
|
|
|
Leitao, R. P., Zuanon, J., Mouillot, D., Leal, C. G., Hughes, R. M., Kaufmann, P. R., et al. (2018). Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography, 41(1), 219–232.
Résumé: Agricultural land use is a primary driver of environmental impacts on streams. However, the causal processes that shape these impacts operate through multiple pathways and at several spatial scales. This complexity undermines the development of more effective management approaches, and illustrates the need for more in-depth studies to assess the mechanisms that determine changes in stream biodiversity. Here we present results of the most comprehensive multi-scale assessment of the biological condition of streams in the Amazon to date, examining functional responses of fish assemblages to land use. We sampled fish assemblages from two large human-modified regions, and characterized stream conditions by physical habitat attributes and key landscape-change variables, including density of road crossings (i.e. riverscape fragmentation), deforestation, and agricultural intensification. Fish species were functionally characterized using ecomorphological traits describing feeding, locomotion, and habitat preferences, and these traits were used to derive indices that quantitatively describe the functional structure of the assemblages. Using structural equation modeling, we disentangled multiple drivers operating at different spatial scales, identifying causal pathways that significantly affect stream condition and the structure of the fish assemblages. Deforestation at catchment and riparian network scales altered the channel morphology and the stream bottom structure, changing the functional identity of assemblages. Local deforestation reduced the functional evenness of assemblages (i.e. increased dominance of specific trait combinations) mediated by expansion of aquatic vegetation cover. Riverscape fragmentation reduced functional richness, evenness and divergence, suggesting a trend toward functional homogenization and a reduced range of ecological niches within assemblages following the loss of regional connectivity. These results underscore the often-unrecognized importance of different land use changes, each of which can have marked effects on stream biodiversity. We draw on the relationships observed herein to suggest priorities for the improved management of stream systems in the multiple-use landscapes that predominate in human-modified tropical forests.
|
|