|
Ayata, S. - D., Irisson, J. - O., Aubert, A., Berline, L., Dutay, J. - C., Mayot, N., et al. (2018). Regionalisation of the Mediterranean basin, a MERMEX synthesis. Progress in Oceanography, 163, 7–20.
Résumé: Regionalisation aims at delimiting provinces within which physical conditions, chemical properties, and biological communities are reasonably homogeneous. This article proposes a synthesis of the many recent regionalisations of the open-sea regions of the Mediterranean Sea. The nine studies considered here defined regions based on different, and sometimes complementary, criteria: dynamics of surface chlorophyll concentration, ocean currents, three-dimensional hydrological and biogeochemical properties, or the distribution of organisms. Although they identified different numbers and patterns of homogeneous regions, their compilation in the epipelagic zone identifies nine consensus frontiers, eleven consensus regions with relatively homogeneous conditions, and four heterogeneous regions with highly dynamical conditions. The consensus frontiers and regions are in agreement with well-known hydrodynamical features of the Mediterranean Sea, which constrain the distribution of hydrological and ecological variables. The heterogeneous regions are rather defined by intense mesoscale activity. The synthesis proposed here could constitute a reference step for management actions and spatial planning, such as the application of the European Marine Strategy Framework Directive, and for future biogeochemical and ecological studies in the Mediterranean Sea.
|
|
|
Boyd, C., Grunbaum, D., Hunt, G. L., Punt, A. E., Weimerskirch, H., & Bertrand, S. (2017). Effects of variation in the abundance and distribution of prey on the foraging success of central place foragers. J. Appl. Ecol., 54(5), 1362–1372.
Résumé: 1. Seabirds and pinnipeds are vulnerable to reductions in prey availability, especially during the breeding season when spatial constraints limit their adaptive capacity. There are growing concerns about the effects of fisheries on prey availability in regions where large commercial fisheries target forage fish. 2. For breeding seabirds and pinnipeds, prey availability depends on a combination of abundance, accessibility, patchiness and distance from the colony. An understanding of the aspects of prey availability that determine foraging success is essential for the design of effective management responses. 3. We used a mechanistic individual-based foraging model based on observed data for two sea-bird species, the Peruvian Booby Sula variegata and Guanay Cormorant Phalacrocorax bougainvilliorum, to simulate the foraging patterns of seabirds feeding on schooling fish. We ran the model over simulated prey fields representing eight possible combinations of high or low prey abundance, shallow or deep prey, and broadly distributed or spatially concentrated prey. 4. The results highlight the importance of the accessibility of prey. Depth distribution was the primary factor determining modelled foraging success for both species, followed by abundance, and then spatial configuration. 5. Synthesis and applications. The individual-based foraging model provides a spatially explicit framework for assessing the effects of fisheries on the foraging success of seabirds and other central place foragers, and for evaluating the potential effectiveness of marine-protected areas and other fisheries management strategies for safeguarding central place foragers in dynamic ecosystems. Our analysis indicates that broad-scale fisheries management strategies that maintain forage fish above critical biomass levels are essential, but may need to be supplemented by targeted actions, such as time-area closures, when environmental conditions lead to low prey abundance or reduce prey accessibility for seabirds or pinnipeds of conservation concern. The individual-based foraging model is adaptable and could be reconfigured for application to other species and systems.
|
|
|
Kirkman, S. P., Blamey, L., Lamont, T., Field, J. G., Bianchi, G., Huggett, J. A., et al. (2016). Spatial characterisation of the Benguela ecosystem for ecosystem-based management. Afr. J. Mar. Sci., 38(1), 7–22.
Résumé: The three countries of the Benguela Current Large Marine Ecosystem (BCLME), namely Angola, Namibia and South Africa, have committed to implementing ecosystem-based management (EBM) including an ecosystem approach to fisheries (EAF) in the region, to put in practice the principles of sustainable development in ocean-related matters. There is also recognition of the need for marine spatial planning (MSP) as a process for informing EBM with regard to the allocation and siting of ocean uses so that ecosystem health is ensured and trade-offs between ecosystem services are appropriately dealt with. Marine spatial planning is both an integrated and an area-based process, and this paper produces a spatial characterisation of the BCLME for achieving a common basis for MSP in the region, focusing on the oceanography, biology and fisheries. Recognising spatial variation in physical driving forces, primary and secondary production, trophic structures and species richness, four different subsystems are characterised: (1) north of the Angola-Benguela Front, (2) from the Angola-Benguela Front to Luderitz, (3) from Luderitz to Cape Agulhas, and (4) from Cape Agulhas to Port Alfred on the south-east coast of South Africa. Research and monitoring requirements of relevance for MSP and EBM in the region are identified, focusing on understanding variability and change, including with regard to the boundary areas identified for the system. To this end, 14 cross-shelf monitoring transects are proposed (including seven that are already being monitored) to estimate fluxes of biota, energy and materials within and between the subsystems. The usefulness of models for understanding ecosystem variability and changes is recognised and the need for fine-scale resolution of both sampling and modelling for adequate MSP as input to EBM for the often-conflicting interests of conserving biodiversity, and managing fisheries, recreation, offshore oil and gas exploration and exploitation, offshore mining and shipping routes, is emphasised.
|
|
|
Magris, R. A., Andrello, M., Pressey, R. L., Mouillot, D., Dalongeville, A., Jacobi, M. N., et al. (2018). Biologically representative and well-connected marine reserves enhance biodiversity persistence in conservation planning. Conserv. Lett., 11(4), Unsp-e12439.
Résumé: Current methods in conservation planning for promoting the persistence of biodiversity typically focus on either representing species geographic distributions or maintaining connectivity between reserves, but rarely both, and take a focal species, rather than a multispecies, approach. Here, we link prioritization methods with population models to explore the impact of integrating both representation and connectivity into conservation planning for species persistence. Using data on 288 Mediterranean fish species with varying conservation requirements, we show that: (1) considering both representation and connectivity objectives provides the best strategy for enhanced biodiversity persistence and (2) connectivity objectives were fundamental to enhancing persistence of small-ranged species, which are most in need of conservation, while the representation objective benefited only wide-ranging species. Our approach provides a more comprehensive appraisal of planning applications than approaches focusing on either representation or connectivity, and will hopefully contribute to build more effective reserve networks for the persistence of biodiversity.
|
|
|
Péron, C., Gremillet, D., Prudor, A., Pettex, E., Saraux, C., Soriano-Redondo, A., et al. (2013). Importance of coastal Marine Protected Areas for the conservation of pelagic seabirds: The case of Vulnerable yelkouan shearwaters in the Mediterranean Sea. Biological Conservation, 168, 210–221.
Résumé: Marine Protected Areas (MPAs) are being established across all marine regions but their validity for the conservation of highly mobile marine vertebrates has been questioned. We tested the hypothesis that French coastal MPAs primarily designed for coastal and benthic biota are also beneficial for the conservation of a pelagic seabird, the Vulnerable yelkouan shearwater (Puffinus yelkouan), an endemic species to the Mediterranean Sea. We used a vast spectrum of electronic devices (GPS, temperature-depth-recorders, satellite transmitters and geolocators) and stable isotopic analyses to study the year-round movements and the trophic status of yelkouan shearwaters from the Hyères archipelago (France). In addition we conducted large-scale ship and aircrafts observation surveys to investigate spatio-temporal density patterns of shearwaters (genus Puffinus) in the western Mediterranean Sea. This extensive investigation permitted the first comprehensive study of the at-sea ecology of yelkouan shearwaters showing strikingly coastal habits, partial migration, unsuspected diving capabilities (max dive depth of 30 m), and a broad diet ranging from zooplankton to small pelagic fish. Importantly, 31% of yelkouan shearwaters GPS positions associated with foraging, 38% of diving positions, and 27% of resting positions were within the three French MPAs during the breeding season. These high scores confirmed by year-round distribution derived from GLS, PTTs, at-sea and aerial observations, validated our hypothesis of the major importance of coastal MPAs for the conservation of yelkouan shearwater. Our case-study is therefore a major contribution to research efforts aiming at linking the spatial ecology of highly mobile marine vertebrates with effective conservation of marine biodiversity.
|
|