Accueil | << 1 >> |
![]() |
Briscoe, D. K., Hobday, A. J., Carlisle, A., Scales, K., Eveson, J. P., Arrizabalaga, H., et al. (2017). Ecological bridges and barriers in pelagic ecosystems. Deep-Sea Res. Part II-Top. Stud. Oceanogr., 140, 182–192.
Résumé: Many highly mobile species are known to use persistent pathways or corridors to move between habitat patches in which conditions are favorable for particular activities, such as breeding or foraging. In the marine realm, environmental variability can lead to the development of temporary periods of anomalous oceanographic conditions that can connect individuals to areas of habitat outside a population's usual range, or alternatively, restrict individuals from areas usually within their range, thus acting as ecological bridges or ecological barriers. These temporary features can result in novel or irregular trophic interactions and changes in population spatial dynamics, and, therefore, may have significant implications for management of marine ecosystems. Here, we provide evidence of ecological bridges and barriers in different ocean regions, drawing upon five case studies in which particular oceanographic conditions have facilitated or restricted the movements of individuals from highly migratory species. We discuss the potential population-level significance of ecological bridges and barriers, with respect to the life history characteristics of different species, and inter- and intra-population variability in habitat use. Finally, we summarize the persistence of bridge dynamics with time, our ability to monitor bridges and barriers in a changing climate, and implications for forecasting future climate mediated ecosystem change.
Mots-Clés: arctic marine mammals; atlantic bluefin tuna; Billfish; Brazilian episode; climate-change; el-nino; interannual variation; Marine mammal; marlin makaira-nigricans; Migration corridors; Oceanographic features; population connectivity; satellite archival tags; sea-turtles; site fidelity; species distribution; thunnus-maccoyii; Tuna
|
Carpentier, A. S., Berthe, C., Ender, I., Jaine, F. R. A., Mourier, J., Stevens, G., et al. (2019). Preliminary insights into the population characteristics and distribution of reef (Mobula alfredi) and oceanic (M. birostris) manta rays in French Polynesia. Coral Reefs, 38(6), 1197–1210.
Résumé: In French Polynesia, both currently recognized manta ray species, Mobula alfredi and M. birostris, are observed. Despite being an important cultural asset and generating significant economic benefits through manta ray watching tourism, published data on the ecology and threats to these species in the region are scarce. Based on an 18-year dataset of sighting records collected by citizen scientists and during two scientific expeditions, this study provides the first insights into the population characteristics and regional distribution of the two manta ray species in French Polynesia. A total of 1347 manta ray photographs (1337 for M. alfredi and 10 for M. birostris) were examined for the period January 2001-December 2017, with photo-identification techniques leading to the successful identification of 317 individual M. alfredi and 10 individual M. birostris throughout the Society, Tuamotu and Marquesas Islands. We provide the first confirmation of sympatric distribution of both species in the Society Islands. Our results highlight strong and long-term site fidelity of M. alfredi individuals to certain aggregation sites (> 9 years for 16 individuals) and reveal some degree of connectivity between populations, with 10 individuals recorded moving between islands located up to 50 km apart. Analysis of photographs of individuals bearing sub-lethal injuries (n = 68) suggests that M. alfredi are more likely to be injured at inhabited islands (Maupiti or Bora Bora; 75% of all injured individuals) than at uninhabited islands, with 75% of injuries related to boat propeller strikes and fishing gear entanglements. Our findings emphasize the need for further research to allow for a comprehensive evaluation of population structure, size and threats to manta rays in this region.
|
Courbin, N., Besnard, A., Peron, C., Saraux, C., Fort, J., Perret, S., et al. (2018). Short-term prey field lability constrains individual specialisation in resource selection and foraging site fidelity in a marine predator. Ecol. Lett., 21(7), 1043–1054.
Résumé: Spatio-temporally stable prey distributions coupled with individual foraging site fidelity are predicted to favour individual resource specialisation. Conversely, predators coping with dynamic prey distributions should diversify their individual diet and/or shift foraging areas to increase net intake. We studied individual specialisation in Scopoli's shearwaters (Calonectris diomedea) from the highly dynamic Western Mediterranean, using daily prey distributions together with resource selection, site fidelity and trophic-level analyses. As hypothesised, we found dietary diversification, low foraging site fidelity and almost no individual specialisation in resource selection. Crucially, shearwaters switched daily foraging tactics, selecting areas with contrasting prey of varying trophic levels. Overall, information use and plastic resource selection of individuals with reduced short-term foraging site fidelity allow predators to overcome prey field lability. Our study is an essential step towards a better understanding of individual responses to enhanced environmental stochasticity driven by global changes, and of pathways favouring population persistence.
|
Darnaude, A. M., & Hunter, E. (2018). Validation of otolith delta O-18 values as effective natural tags for shelf-scale geolocation of migrating fish. Mar. Ecol.-Prog. Ser., 598, 167–185.
Résumé: The oxygen isotopic ratio of fish otoliths is increasingly used as a 'natural tag' to assess provenance in migratory species, with the assumption that variations in delta O-18 values closely reflect individual ambient experience of temperature and/or salinity. We employed archival tag data and otoliths collected from a shelf-scale study of the spatial dynamics of North Sea plaice Pleuronectes platessa L., to examine the limits of otolith delta O-18-based geolocation of fish during their annual migrations. Detailed intra-annual otolith delta O-18 measurements for 1997-1999 from individuals of 3 distinct sub-stocks with different spawning locations were compared with delta O-18 values predicted at the monthly, seasonal and annual scales, using predicted sub-stock specific temperatures and salinities over the same years. Spatio-temporal variation in expected delta O-18 values (-0.23 to 2.94%) mainly reflected variation in temperature, and among-zone discrimination potential using otolith delta O-18 varied greatly by temporal scale and by time of year. Measured otolith delta O-18 values (-0.71 to 3.09%) largely mirrored seasonally predicted values, but occasionally fell outside expected delta O-18 ranges. Where mismatches were observed, differences among sub-stocks were consistently greater than predicted, suggesting that in plaice, differential sub-stock growth rates and physiological effects during oxygen fractionation enhance geolocation potential using otolith delta O-18. Comparing intra-annual delta O-18 values over several consecutive years for individuals with contrasted migratory patterns corroborated a high degree of feeding and spawning site fidelity irrespective of the sub-stock. Informed interpretation of otolith delta O-18 values can therefore provide relatively detailed fisheries-relevant data not readily obtained by conventional means.
Mots-Clés: atlantic bluefin tuna; carbon stable-isotopes; cod gadus-morhua; Fish migration; life-history; Natural tag; north-sea plaice; Oxygen; oxygen-isotope fractionation; Plaice; Pleuronectes platessa; pleuronectes-platessa l; population regulation; Site fidelity; Stable isotopes; stock structure; western-australia
|