2020 |
Gilman, E., et al. "Effect of pelagic longline bait type on species selectivity: a global synthesis of evidence." Rev. Fish. Biol. Fish.. 30.3 (2020): 535–551.
Résumé: Fisheries can profoundly affect bycatch species with 'slow' life history traits. Managing bait type offers one tool to control species selectivity. Different species and sizes of marine predators have different prey, and hence bait, preferences. This preference is a function of a bait's chemical, visual, acoustic and textural characteristics and size, and for seabirds the effect on hook sink rate is also important. We conducted a global meta-analysis of existing estimates of the relative risk of capture on different pelagic longline baits. We applied a Bayesian random effects meta-analytic regression modelling approach to estimate overall expected bait-specific catch rates. For blue shark and marine turtles, there were 34% (95% HDI: 4-59%) and 60% (95% HDI: 44-76%) significantly lower relative risks of capture on forage fish bait than squid bait, respectively. Overall estimates of bait-specific relative risk were not significantly different for seven other assessed taxa. The lack of a significant overall estimate of relative capture risk for pelagic shark species combined but significant effect for blue sharks suggests there is species-specific variability in bait-specific catch risk within this group. A qualitative literature review suggests that tunas and istiophorid billfishes may have higher catch rates on squid than fish bait, which conflicts with reducing marine turtle and blue shark catch rates. The findings from this synthesis of quantitative and qualitative evidence support identifying economically viable bycatch management measures with acceptable tradeoffs when multispecies conflicts are unavoidable, and highlight research priorities for global pelagic longline fisheries.
|
|
2019 |
Bonola, M., et al. "Fine scale geographic residence and annual primary production drive body condition of wild immature green turtles (Chelonia mydas) in Martinique Island (Lesser Antilles)." Biol. Open. 8.12 (2019): bio048058.
Résumé: The change of animal biometrics (body mass and body size) can reveal important information about their living environment as well as determine the survival potential and reproductive success of individuals and thus the persistence of populations. However, weighing individuals like marine turtles in the field presents important logistical difficulties. In this context, estimating body mass (BM) based on body size is a crucial issue. Furthermore, the determinants of the variability of the parameters for this relationship can provide information about the quality of the environment and the manner in which individuals exploit the available resources. This is of particular importance in young individuals where growth quality might be a determinant of adult fitness. Our study aimed to validate the use of different body measurements to estimate BM, which can be difficult to obtain in the field, and explore the determinants of the relationship between BM and size in juvenile green turtles. Juvenile green turtles were caught, measured, and weighed over 6 years (2011 2012; 2015 2018) at six bays to the west of Martinique Island (Lesser Antilles). Using different datasets from this global database, we were able to show that the BM of individuals can be predicted from body measurements with an error of less than 2%. We built several datasets including different morphological and time-location information to test the accuracy of the mass prediction. We show a yearly and north – south pattern for the relationship between BM and body measurements. The year effect for the relationship of BM and size is strongly correlated with net primary production but not with sea surface temperature or cyclonic events. We also found that if the bay locations and year effects were removed from the analysis, the mass prediction degraded slightly but was still less than 3% on average. Further investigations of the feeding habitats in Martinique turtles are still needed to better understand these effects and to link them with geographic and oceanographic conditions.
|
|
2017 |
Briscoe, D. K., et al. "Ecological bridges and barriers in pelagic ecosystems." Deep-Sea Res. Part II-Top. Stud. Oceanogr.. 140 (2017): 182–192.
Résumé: Many highly mobile species are known to use persistent pathways or corridors to move between habitat patches in which conditions are favorable for particular activities, such as breeding or foraging. In the marine realm, environmental variability can lead to the development of temporary periods of anomalous oceanographic conditions that can connect individuals to areas of habitat outside a population's usual range, or alternatively, restrict individuals from areas usually within their range, thus acting as ecological bridges or ecological barriers. These temporary features can result in novel or irregular trophic interactions and changes in population spatial dynamics, and, therefore, may have significant implications for management of marine ecosystems. Here, we provide evidence of ecological bridges and barriers in different ocean regions, drawing upon five case studies in which particular oceanographic conditions have facilitated or restricted the movements of individuals from highly migratory species. We discuss the potential population-level significance of ecological bridges and barriers, with respect to the life history characteristics of different species, and inter- and intra-population variability in habitat use. Finally, we summarize the persistence of bridge dynamics with time, our ability to monitor bridges and barriers in a changing climate, and implications for forecasting future climate mediated ecosystem change.
|
|