Accueil | << 1 2 >> |
![]() |
Auguet, J. C., Montanie, H., Delmas, D., Hartmann, H. J., & Huet, V. (2005). Dynamic of virioplankton abundance and its environmental control in the Charente estuary (France). Microb Ecol, 50(3), 337–349.
Résumé: The Charente River provides nutrient- and virus-rich freshwater input to the Marennes Oleron Basin, the largest oyster-producing region in Europe. To evaluate virioplankton distribution in the Charente Estuary and identify which environmental variables control dynamic of virioplankton abundance, five stations defined by a salinity gradient (0-0.5, 0.6-5, 13-17, 20-24, and higher than 30 PSU) were surveyed over a year. Viral abundance was related to bacterioplankton abundance and activities, photosynthetic pigments, nutrient concentration, and physical parameters (temperature and salinity). On a spatial scale, virus displayed a decreasing pattern seaward with abundance ranging over the sampling period from 1.4x10(7) to 20.8x10(7) viruses mL-1 making virioplankton the most abundant component of planktonic microorganisms in the Charente Estuary. A good correlation was found between viral and bacterial abundance (rs=0.85). Furthermore, bacterial abundance was the most important predictor of viral abundance explaining alone between 66% (winter) and 76% (summer) of viral variability. However, no relation existed between viral abundance and chlorophyll a. Temporal variations in viral distributions were mainly controlled by temperature through the control of bacterial dynamics. Spatial variations of viral abundance were influenced by hydrodynamic conditions especially during the winter season where virioplankton distribution was entirely driven by mixing processes.
|
Auguet, J. C., Montanie, H., & Lebaron, P. (2006). Structure of virioplankton in the Charente Estuary (France): transmission electron microscopy versus pulsed field gel electrophoresis. Microb Ecol, 51(2), 197–208.
Résumé: Changes in the composition of viral communities were investigated along a salinity gradient and at different times by means of transmission electron microscopy (TEM) and pulsed field gel electrophoresis (PFGE). Samples were collected in fresh (Charente River), estuarine (Charente Estuary), and coastal (Pertuis d'Antioche, French Atlantic coast) waters. Both methods revealed similar patterns in viral community structure with a dominance of small viral particles (capsid and genome size). Viruses with a head size below 65 nm made up 71 +/- 5% of total virus-like particles, and virus-like genomes (VLG) below 100 kb accounted for 89 +/- 9% of total VLG. Despite this apparent stability of virioplankton composition over spatial scale (salinity gradient), the occurrence of large viruses (capsid and genome size) in estuarine and seawater samples indicated the presence of viral populations specific to a geographical location. Temporal changes in the structure (capsid and genome size) of viral communities were more pronounced than those reported at the spatial scale. From January to May 2003, seasonal changes in viral abundance and bacterial production occurred concomitantly with an increase in viral genomic diversity (richness), suggesting that virioplankton composition was strongly linked to changes in microbial activity and/or in the structure of the host communities. Although PFGE and TEM yielded complementary results in the description of virioplankton structures, it seems that the use of PFGE alone should be enough for the monitoring of community changes.
|
Chu, Y., Tournoud, M. G., Salles, C., Got, P., Perrin, J. L., Rodier, C., et al. (2014). Spatial and temporal dynamics of bacterial contamination in South France coastal rivers: focus on in-stream processes during low flows and floods. Hydrological Processes, 28(8), 3300–3313. |
Colin, N., Villeger, S., Wilkes, M., de Sostoa, A., & Maceda-Veiga, A. (2018). Functional diversity measures revealed impacts of non-native species and habitat degradation on species-poor freshwater fish assemblages. Sci. Total Environ., 625, 861–871.
Résumé: Trail-based ecology has been developed for decades lo infer ecosystem responses to stressors based on the functional structure of communities, yet its value in species-poor systems is largely unknown. Here, we used an extensive clataset in a Spanish region highly prone to non-native fish invasions (15 catchments, N 389 sites) to assess for the first time how species-poor communities respond to large-scale environmental gradients using a taxonomic and functional trait-based approach in riverine fish. We examined total species richness and three functional trait-based indices available when many sites have <= 3 species (specialization, FSpe; onginaliy, FOri and entropy, FEnt). We assessed the responses of these taxonomic and functional indices along gradients of altitude, water pollution, physical habitat degradation and non-native fish biomass. Whilst species richness was relatively sensitive to spatial effects, functional diversity indices were responsive across natural and anthropogenic gradients. All four diversity measures declined with altitude but this decline was modulated by physical habitat degradation (richness, FSpe and FEnt) and the non-native total fish biomass ratio (FSpe and FOri) in ways that varied between indices. Furthermore, FSpe and FOri were significantly correlated with Total Nitrogen. Non-native fish were a major component of the taxonomic and functional structure of fish communities, raising concerns about potential misdiagnosis between invaded and environmentally-degraded river reaches. Such misdiagnosis was evident in a regional fish index widely used in official monitoring programs. We recommend the application of FSpe and FOri to extensive clatasets from monitoring programs in order to generate valuable cross-system information about the impacts of non-native species and habitat degradation, even in species-poor systems. Scoring non-native species apart from habitat degradation in the indices used to determine ecosystem health is essential to develop better management strategies. (C) 2013 Elsevier B.V. All rights reserved.
Mots-Clés: biodiversity; ecosystems; community; life-history traits; Non-native species; 4th-corner problem; Functional diversity; Fish assemblages; Biomonitoring; ecological quality; flow regime; Human disturbance; mediterranean rivers; Mediterranean rivers; stream; traits-environment relationships
|
Du, X., Deng, Y., Li, S., Escalas, A., Feng, K., He, Q., et al. (2020). Steeper spatial scaling patterns of subsoil microbiota are shaped by deterministic assembly process. Mol. Ecol., .
Résumé: Although many studies have investigated the spatial scaling of microbial communities living in surface soils, very little is known about the patterns within deeper strata, nor is the mechanism behind them. Here, we systematically assessed spatial scaling of prokaryotic biodiversity within three different strata (Upper: 0-20 cm, Middle: 20-40 cm, and Substratum: 40-100 cm) in a typical grassland by examining both distance-decay (DDRs) and species-area relationships (SARs), taxonomically and phylogenetically, as well as community assembly processes. Each layer exhibited significant biogeographic patterns in both DDR and SAR (p < .05), with taxonomic turnover rates higher than phylogenetic ones. Specifically, the spatial turnover rates, beta and z values, respectively, ranged from 0.016 +/- 0.005 to 0.023 +/- 0.005 and 0.065 +/- 0.002 to 0.077 +/- 0.004 across soil strata, and both increased with depth. Moreover, the prokaryotic community in grassland soils assembled mainly according to deterministic rather than stochastic mechanisms. By using normalized stochasticity ratio (NST) based on null model, the relative importance of deterministic ratios increased from 48.0 to 63.3% from Upper to Substratum, meanwhile a phylogenetic based method revealed average beta NTI also increased with depth, from -5.29 to 19.5. Using variation partitioning and distance approaches, both geographic distance and soil properties were found to strongly affect biodiversity structure, the proportions increasing with depth, but spatial distance was always the main underlying factor. These indicated increasingly deterministic proportions in accelerating turnover rates for spatial assembly of prokaryotic biodiversity. Our study provided new insights on biogeography in different strata, revealing importance of assembly patterns and mechanisms of prokaryote communities in below-surface soils.
|