|
Andrello, M., Guilhaumon, F., Albouy, C., Parravicini, V., Scholtens, J., Verley, P., et al. (2017). Global mismatch between fishing dependency and larval supply from marine reserves. Nat. Commun., 8, 16039.
Résumé: Marine reserves are viewed as flagship tools to protect exploited species and to contribute to the effective management of coastal fisheries. Yet, the extent to which marine reserves are globally interconnected and able to effectively seed areas, where fisheries are most critical for food and livelihood security is largely unknown. Using a hydrodynamic model of larval dispersal, we predict that most marine reserves are not interconnected by currents and that their potential benefits to fishing areas are presently limited, since countries with high dependency on coastal fisheries receive very little larval supply from marine reserves. This global mismatch could be reversed, however, by placing new marine reserves in areas sufficiently remote to minimize social and economic costs but sufficiently connected through sea currents to seed the most exploited fisheries and endangered ecosystems.
|
|
|
Bakker, J., Wangensteen, O. S., Chapman, D. D., Boussarie, G., Buddo, D., Guttridge, T. L., et al. (2017). Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact. Sci Rep, 7, 16886.
Résumé: Sharks are charismatic predators that play a key role in most marine food webs. Their demonstrated vulnerability to exploitation has recently turned them into flagship species in ocean conservation. Yet, the assessment and monitoring of the distribution and abundance of such mobile species in marine environments remain challenging, often invasive and resource-intensive. Here we pilot a novel, rapid and non-invasive environmental DNA (eDNA) metabarcoding approach specifically targeted to infer shark presence, diversity and eDNA read abundance in tropical habitats. We identified at least 21 shark species, from both Caribbean and Pacific Coral Sea water samples, whose geographical patterns of diversity and read abundance coincide with geographical differences in levels of anthropogenic pressure and conservation effort. We demonstrate that eDNA metabarcoding can be effectively employed to study shark diversity. Further developments in this field have the potential to drastically enhance our ability to assess and monitor elusive oceanic predators, and lead to improved conservation strategies.
|
|
|
Bender, M. G., Pie, M. R., Rezende, E. L., Mouillot, D., & Floeter, S. R. (2013). Biogeographic, historical and environmental influences on the taxonomic and functional structure of Atlantic reef fish assemblages. Global Ecology and Biogeography, 22(11), 1173–1182.
Résumé: Aim To disentangle how historic, biogeographic and environmental factors have shaped the composition of different reef fish assemblages, we analysed assemblage structure from a taxonomic (proportions of species from different families) and functional perspective (diet and body size). Location Atlantic Ocean. Methods The distributions of 1629 fish species were compiled for 31 locations across the Atlantic Ocean (39°66′ N, 27°50′ S). These locations provide a richness gradient ranging from 54 species in St Paul's Rocks to 474 in Cuba. We used cluster analyses to assess how historical and biogeographic factors have shaped the taxonomic and functional structure (i.e. the distribution of species within families, diet and body size groups) of assemblages. We then employed a constrained analysis of principal coordinates (CAP) to test the relative influence of the distance from the biodiversity centre in the Atlantic, sea surface temperature, isolation, coral species richness and area, and coastal length on the observed patterns of assemblage structure. Results The taxonomic and functional structure of reef fish assemblages across the Atlantic exhibits a biogeographic fingerprint, with a marked discrimination between species-rich biogenic reefs (concentrated primarily in the Caribbean and composed of small species feeding on invertebrates) and poorer peripheral regions dominated by larger species with more diverse diets. The first CAP axis explains 87% of body size distribution in assemblages, showing that the effects of sea surface temperature and coral richness and those of isolation are antagonistic and can be embedded into a single dimension. Environmental factors, such as temperature and habitat complexity, explain the disproportionate number of small species in the Caribbean, whereas in the remaining regions the predominance of large-bodied fish increases with isolation due to high dispersal ability. Main conclusions We found that historical events, which have shaped the biogeography of reef fishes, and environmental characteristics (coral reefs versus periphery) have both played a role in structuring the taxonomic and functional components of Atlantic fish assemblages.
|
|
|
Borsa, P., Durand, J. - D., Chen, W. - J., Hubert, N., Muths, D., Mou-Tham, G., et al. (2016). Comparative phylogeography of the western Indian Ocean reef fauna. Acta Oecologica, , 72–86.
Résumé: Assessing patterns of connectivity at the community and population levels is relevant to marine resource management and conservation. The present study reviews this issue with a focus on the western Indian Ocean (WIO) biogeographic province. This part of the Indian Ocean holds more species than expected from current models of global reef fish species richness. In this study, checklists of reef fish species were examined to determine levels of endemism in each of 10 biogeographic provinces of the Indian Ocean. Results showed that the number of endemic species was higher in the WIO than in any other region of the Indian Ocean. Endemic species from the WIO on the average had a larger body size than elsewhere in the tropical Indian Ocean. This suggests an effect of peripheral speciation, as previously documented in the Hawaiian reef fish fauna, relative to other sites in the tropical western Pacific. To explore evolutionary dynamics of species across biogeographic provinces and infer mechanisms of speciation, we present and compare the results of phylogeographic surveys based on compilations of published and unpublished mitochondrial DNA sequences for 19 Indo-Pacific reef-associated fishes (rainbow grouper Cephalopholis argus, scrawled butterflyfish Chaetodon meyeri, bluespot mullet Crenimugil sp. A, humbug damselfish Dascyllus abudafur/Dascyllus aruanus, areolate grouper Epinephelus areolatus, blacktip grouper Epinephelus fasciatus, honeycomb grouper Epinephelus merra, bluespotted cornetfish Fistularia commersonii, cleaner wrasse Labroides sp. 1, longface emperor Lethrinus sp. A, bluestripe snapper Lutjanus kasmira, unicornfishes Naso brevirosris, Naso unicornis and Naso vlamingii, blue-spotted maskray Neotrygon kuhlii, largescale mullet Planiliza macrolepis, common parrotfish Scarus psicattus, crescent grunter Terapon jarbua, whitetip reef shark Triaenodon obesus) and three coastal Indo-West Pacific invertebrates (blue seastar Linckia laevigata, spiny lobster Panulirus homarus, small giant clam Tridacna maxima). Heterogeneous and often unbalanced sampling design, paucity of data in a number of cases, and among-species discrepancy in phylogeographic structure precluded any generalization regarding phylogeographic patterns. Nevertheless, the WIO might have been a source of haplotypes in some cases and it also harboured an endemic clade in at least one case. The present survey also highlighted likely cryptic species. This may eventually affect the accuracy of the current checklists of species, which form the basis of some of the recent advances in Indo-West Pacific marine ecology and biogeography.
|
|
|
Cahill, A. E., De Jode, A., Dubois, S., Bouzaza, Z., Aurelle, D., Boissin, E., et al. (2017). A multispecies approach reveals hot spots and cold spots of diversity and connectivity in invertebrate species with contrasting dispersal modes. Mol. Ecol., 26(23), 6563–6577.
Résumé: Genetic diversity is crucial for species' maintenance and persistence, yet is often overlooked in conservation studies. Species diversity is more often reported due to practical constraints, but it is unknown if these measures of diversity are correlated. In marine invertebrates, adults are often sessile or sedentary and populations exchange genes via dispersal of gametes and larvae. Species with a larval period are expected to have more connected populations than those without larval dispersal. We assessed the relationship between measures of species and genetic diversity, and between dispersal ability and connectivity. We compiled data on genetic patterns and life history traits in nine species across five phyla. Sampling sites spanned 600km in the northwest Mediterranean Sea and focused on a 50-km area near Marseilles, France. Comparative population genetic approaches yielded three main results. (i) Species without larvae showed higher levels of genetic structure than species with free-living larvae, but the role of larval type (lecithotrophic or planktotrophic) was negligible. (ii) A narrow area around Marseilles, subject to offshore advection, limited genetic connectivity in most species. (iii) We identified sites with significant positive contributions to overall genetic diversity across all species, corresponding with areas near low human population densities. In contrast, high levels of human activity corresponded with a negative contribution to overall genetic diversity. Genetic diversity within species was positively and significantly linearly related to local species diversity. Our study suggests that local contribution to overall genetic diversity should be taken into account for future conservation strategies.
|
|