Accueil | << 1 2 3 4 >> |
![]() |
Aubree, F., David, P., Jarne, P., Loreau, M., Mouquet, N., & Calcagno, V. (2020). How community adaptation affects biodiversity-ecosystem functioning relationships. Ecol. Lett., 23(8), 1263–1275.
Résumé: Evidence is growing that evolutionary dynamics can impact biodiversity-ecosystem functioning (BEF) relationships. However the nature of such impacts remains poorly understood. Here we use a modelling approach to compare random communities, with no trait evolutionary fine-tuning, and co-adapted communities, where traits have co-evolved, in terms of emerging biodiversity-productivity, biodiversity-stability and biodiversity-invasion relationships. Community adaptation impacted most BEF relationships, sometimes inverting the slope of the relationship compared to random communities. Biodiversity-productivity relationships were generally less positive among co-adapted communities, with reduced contribution of sampling effects. The effect of community-adaptation, though modest regarding invasion resistance, was striking regarding invasion tolerance: co-adapted communities could remain very tolerant to invasions even at high diversity. BEF relationships are thus contingent on the history of ecosystems and their degree of community adaptation. Short-term experiments and observations following recent changes may not be safely extrapolated into the future, once eco-evolutionary feedbacks have taken place.
|
Bouvier, T., Venail, P., Pommier, T., Bouvier, C., Barbera, C., & Mouquet, N. (2012). Contrasted Effects of Diversity and Immigration on Ecological Insurance in Marine Bacterioplankton Communities. PLoS One, 7(6).
Résumé: The ecological insurance hypothesis predicts a positive effect of species richness on ecosystem functioning in a variable environment. This effect stems from temporal and spatial complementarity among species within metacommunities coupled with optimal levels of dispersal. Despite its importance in the context of global change by human activities, empirical evidence for ecological insurance remains scarce and controversial. Here we use natural aquatic bacterial communities to explore some of the predictions of the spatial and temporal aspects of the ecological insurance hypothesis. Addressing ecological insurance with bacterioplankton is of strong relevance given their central role in fundamental ecosystem processes. Our experimental set up consisted of water and bacterioplankton communities from two contrasting coastal lagoons. In order to mimic environmental fluctuations, the bacterioplankton community from one lagoon was successively transferred between tanks containing water from each of the two lagoons. We manipulated initial bacterial diversity for experimental communities and immigration during the experiment. We found that the abundance and production of bacterioplankton communities was higher and more stable (lower temporal variance) for treatments with high initial bacterial diversity. Immigration was only marginally beneficial to bacterial communities, probably because microbial communities operate at different time scales compared to the frequency of perturbation selected in this study, and of their intrinsic high physiologic plasticity. Such local “physiological insurance” may have a strong significance for the maintenance of bacterial abundance and production in the face of environmental perturbations.
|
Catherine, A., Selma, M., Mouillot, D., Troussellier, M., & Bernard, C. (2016). Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes. Science of The Total Environment, 559, 74–83.
Résumé: Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R2 = 0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton species richness in temperate lakes. This approach may prove useful and cost-effective for the management and conservation of aquatic ecosystems.
|
D'Agata, S., Mouillot, D., Kulbicki, M., Andrefouet, S., Bellwood, D. R., Cinner, J. E., et al. (2014). Human-Mediated Loss of Phylogenetic and Functional Diversity in Coral Reef Fishes. Current Biology, 24(5), 555–560.
Résumé: Beyond the loss of species richness [1-3], human activities may also deplete the breadth of evolutionary history (phylogenetic diversity) and the diversity of roles (functional diversity) carried out by species within communities, two overlooked components of biodiversity. Both are, however, essential to sustain ecosystem functioning and the associated provision of ecosystem services, particularly under fluctuating environmental conditions [1-7]. We quantified the effect of human activities on the taxonomic, phylogenetic, and functional diversity of fish communities in coral reefs, while teasing apart the influence of biogeography and habitat along a gradient of human pressure across the Pacific Ocean. We detected nonlinear relationships with significant breaking points in the impact of human population density on phylogenetic and functional diversity of parrot-fishes, at 25 and 15 inhabitants/km(2), respectively, while parrot-fish species richness decreased linearly along the same population gradient. Over the whole range, species richness decreased by 11.7%, while phylogenetic and functional diversity dropped by 35.8% and 46.6%, respectively. Our results call for caution when using species richness as a benchmark for measuring the status of ecosystems since it appears to be less responsive to variation in human population densities than its phylogenetic and functional counterparts, potentially imperiling the functioning of coral reef ecosystems.
|
Deininger, A., Faithfull, C. L., Lange, K., Bayer, T., Vidussi, F., & Liess, A. (2016). Simulated terrestrial runoff triggered a phytoplankton succession and changed seston stoichiometry in coastal lagoon mesocosms. Mar. Environ. Res., 119, 40–50.
Résumé: Climate change scenarios predict intensified terrestrial storm runoff, providing coastal ecosystems with large nutrient pulses and increased turbidity, with unknown consequences for the phytoplankton community. We conducted a 12-day mesocosm experiment in the Mediterranean Thau Lagoon (France), adding soil (simulated runoff) and fish (different food webs) in a 2 x 2 full factorial design and monitored phytoplankton composition, shade adaptation and stoichiometry. Diatoms (Chaetoceros) increased fourfold immediately after soil addition, prymnesiophytes and dinoflagellates peaked after six- and 12 days, respectively. Soil induced no phytoplanlcton shade adaptation. Fish reduced the positive soil effect on dinoflagellates (Scripsiella, Glenodinium), and diatom abundance in general. Phytoplankton community composition drove seston stoichiometry. In conclusion, pulsed terrestrial runoff can cause rapid, low quality (high carbon: nutrient) diatom blooms. However, bloom duration may be short and reduced in magnitude by fish. Thus, climate change may shift shallow coastal ecosystems towards famine or feast dynamics. (C) 2016 Elsevier Ltd. All rights reserved.
|