Accueil | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
![]() |
Alfonso, S., Peyrafort, M., Cousin, X., & Begout, M. - L. (2020). Zebrafish Danio rerio shows behavioural cross-context consistency at larval and juvenile stages but no consistency between stages. J. Fish Biol., .
Résumé: Coping style is defined as a set of individual physiological and behavioural characteristics that are consistent across time and context. In the zebrafish Danio rerio, as well as in many other animals, several covariations have been established among behavioural, physiological and molecular responses. Nonetheless, not many studies have addressed the consistency in behavioural responses over time starting at the larval stage. Therefore, this study aimed to improve the understanding of behavioural consistency across contexts and over time in zebrafish from the larval to juvenile stages. Two distinct experiments were conducted: a larval stage experiment (from 8 to 21 days post fertilization, dpf) and a juvenile stage experiment (from 21 to 60 dpf). On one hand, the larval experiment allows to focus on the transition between 8 and 21 dpf, marked by significant morphological changes related to the end of larval stage and initiation of metamorphosis. On the other hand, the juvenile experiment allows to properly cover the period extending from the end of larval stage to the juvenile stage (60 dpf), including metamorphosis which is itself completed around 45 dpf. Within each experiment, boldness was determined using a group risk-taking test to identify bold and shy individuals. A novel environment test was then performed at the same age to evaluate consistency across contexts. Groups of fish (either bold or shy) were bathed in an alizarin red S solution for later identification of their initially determined coping style to evaluate behavioural consistency over time. Fish were then reared under common garden conditions and challenged again with the same behavioural tests at a later age (21 and 60 dpf in the larval and juvenile experiments, respectively). Behavioural consistency was observed across contexts, with bold fish being more active and expressing higher thigmotaxis regardless of age. There was, however, little behavioural consistency over age, suggesting behavioural plasticity during development. Moreover, the use of alizarin red S to conduct this experiment provides new perspectives for the further study of the longitudinal evolution of various traits, including behaviour, over life stages in fish.
|
Andrello, M., de Villemereuil, P., Carboni, M., Busson, D., Fortin, M. - J., Gaggiotti, O. E., et al. (2020). Accounting for stochasticity in demographic compensation along the elevational range of an alpine plant. Ecol. Lett., .
Résumé: Demographic compensation arises when vital rates change in opposite directions across populations, buffering the variation in population growth rates, and is a mechanism often invoked to explain the stability of species geographic ranges. However, studies on demographic compensation have disregarded the effects of temporal variation in vital rates and their temporal correlations, despite theoretical evidence that stochastic dynamics can affect population persistence in temporally varying environments. We carried out a seven-year-long demographic study on the perennial plant Arabis alpina (L.) across six populations encompassing most of its elevational range. We discovered demographic compensation in the form of negative correlations between the means of plant vital rates, but also between their temporal coefficients of variation, correlations and elasticities. Even if their contribution to demographic compensation was small, this highlights a previously overlooked, but potentially important, role of stochastic processes in stabilising population dynamics at range margins.
|
Andrello, M., Guilhaumon, F., Albouy, C., Parravicini, V., Scholtens, J., Verley, P., et al. (2017). Global mismatch between fishing dependency and larval supply from marine reserves. Nat. Commun., 8, 16039.
Résumé: Marine reserves are viewed as flagship tools to protect exploited species and to contribute to the effective management of coastal fisheries. Yet, the extent to which marine reserves are globally interconnected and able to effectively seed areas, where fisheries are most critical for food and livelihood security is largely unknown. Using a hydrodynamic model of larval dispersal, we predict that most marine reserves are not interconnected by currents and that their potential benefits to fishing areas are presently limited, since countries with high dependency on coastal fisheries receive very little larval supply from marine reserves. This global mismatch could be reversed, however, by placing new marine reserves in areas sufficiently remote to minimize social and economic costs but sufficiently connected through sea currents to seed the most exploited fisheries and endangered ecosystems.
|
Auguet, J. C., Montanie, H., Hartmann, H. J., Lebaron, P., Casamayor, E. O., Catala, P., et al. (2009). Potential effect of freshwater virus on the structure and activity of bacterial communities in the Marennes-Oleron Bay (France). Microb Ecol, 57(2), 295–306.
Résumé: Batch culture experiments using viral enrichment were conducted to test the response of a coastal bacterial community to autochthonous (i.e., co-existing) or allochthonous riverine viruses. The effects of viral infections on bacterial dynamics and activity were assessed by epifluorescence microscopy and thymidine incorporation, respectively, whereas the effect of viral infection on bacterial community composition was examined by polymerase chain reaction-single strand conformation polymorphism 16S ribosomal RNA fingerprinting. The percentages of high nucleic acid-containing cells, evaluated by flow cytometry, were significantly correlated (r2=0.91, n=12, p<0.0001) to bacterial production, making this value a good predictor of active cell dynamics along the study. While confinement and temperature were the two principal experimental factors affecting bacterial community composition and dynamics, respectively, additions of freshwater viruses had significant effects on coastal bacterial communities. Thus, foreign viruses significantly reduced net bacterial population increase as compared to the enrichment treated with inactivated virus. Moreover, freshwater viruses recurrently and specifically affected bacterial community composition, as compared to addition of autochthonous viruses. In most cases, the combined treatment viruses and freshwater dissolved organic matter helped to maintain or even enhance species richness in coastal bacterial communities in agreement to the 'killing the winner' hypothesis. Thus, riverine virus input could potentially influence bacterial community composition of the coastal bay albeit with modest modification of bulk bacterial growth.
Mots-Clés: 16S/genetics Seasons Seawater/microbiology/virology Viruses/*growth & development *Water Microbiology; Bacteria/genetics/*growth & development/*virology Biodiversity Colony Count; Bacterial/genetics France Fresh Water/virology Polymorphism; Microbial DNA Fingerprinting DNA; Ribosomal; Single-Stranded Conformational Population Dynamics RNA
|
Ba, K., Thiaw, M., Fall, M., Thiam, N., Meissa, B., Jouffre, D., et al. (2018). Long-term fishing impact on the Senegalese coastal demersal resources: diagnosing from stock assessment models. Aquat. Living Resour., 31, 8.
Résumé: For the first time in Senegal, assessments based on both stochastic and deterministic production models were used to draw a global diagnosis of the fishing impact on coastal demersal stocks. Based one national fisheries databases and scientific trawl surveys data: (i) trends in landings since 1971 were examined, (ii) abundance indices of 10 stocks were estimated using linear models fitted to surveys data and commercial catch per unit efforts, and (iii) stock assessments were carried out using pseudo-equilibrium Fox and Pella-Tomlinson models and a Biomass dynamic production model fitted in a Bayesian framework to abundance indices. Most stocks have seen their abundance sharply declining over time. All stocks combined, results of stock assessments suggest a 63% reduction compared to virgin state. Three fifth of demersal stocks are overexploited and excess in fishing effort was estimated until 75% for the worst case. We conclude by suggesting that the fishing of such species must be regulated and an ecosystem approach to fisheries management should be implemented in order to monitor the whole ecosystem.
|