Accueil | << 1 >> |
![]() |
Escalas, A., Troussellier, M., Yuan, T., Bouvier, T., Bouvier, C., Mouchet, M. A., et al. (2017). Functional diversity and redundancy across fish gut, sediment and water bacterial communities. Environ. Microbiol., 19(8), 3268–3282.
Résumé: This article explores the functional diversity and redundancy in a bacterial metacommunity constituted of three habitats (sediment, water column and fish gut) in a coastal lagoon under anthropogenic pressure. Comprehensive functional gene arrays covering a wide range of ecological processes and stress resistance genes to estimate the functional potential of bacterial communities were used. Then, diversity partitioning was used to characterize functional diversity and redundancy within (), between () and across () habitats. It was showed that all local communities exhibit a highly diversified potential for the realization of key ecological processes and resistance to various environmental conditions, supporting the growing evidence that macro-organisms microbiomes harbour a high functional potential and are integral components of functional gene dynamics in aquatic bacterial metacommunities. Several levels of functional redundancy at different scales of the bacterial metacommunity were observed (within local communities, within habitats and at the metacommunity level). The results suggested a high potential for the realization of spatial ecological insurance within this ecosystem, that is, the functional compensation among microorganisms for the realization and maintenance of key ecological processes, within and across habitats. Finally, the role of macro-organisms as dispersal vectors of microbes and their potential influence on marine metacommunity dynamics were discussed.
|
Seddon, N., Mace, G. M., Naeem, S., Tobias, J. A., Pigot, A. L., Cavanagh, R., et al. (2016). Biodiversity in the Anthropocene: prospects and policy. Proc. R. Soc. B-Biol. Sci., 283(1844), 20162094.
Résumé: Meeting the ever-increasing needs of the Earth's human population without excessively reducing biological diversity is one of the greatest challenges facing humanity, suggesting that newapproaches to biodiversity conservation are required. One idea rapidly gaining momentum-as well as opposition-is to incorporate the values of biodiversity into decision-making using economic methods. Here, we develop several lines of argument for how biodiversity might be valued, building on recent developments in natural science, economics and science-policy processes. Then we provide a synoptic guide to the papers in this special feature, summarizing recent research advances relevant to biodiversity valuation and management. Current evidence suggests that more biodiverse systems have greater stability and resilience, and that by maximizing key components of biodiversity we maximize an ecosystem's long-term value. Moreover, many services and values arising from biodiversity are interdependent, and often poorly captured by standard economic models. We conclude that economic valuation approaches to biodiversity conservation should (i) account for interdependency and (ii) complement rather than replace traditional approaches. To identify possible solutions, we present a framework for understanding the foundational role of hard-to-quantify ` biodiversity services' in sustaining the value of ecosystems to humanity, and then use this framework to highlight new directions for pure and applied research. In most cases, clarifying the links between biodiversity and ecosystem services, and developing effective policy and practice for managing biodiversity, will require a genuinely interdisciplinary approach.
|