2020 |
Pagès, R., et al. "Changes in rivers inputs during the last decades significantly impacted the biogeochemistry of the eastern Mediterranean basin: A modelling study." Prog. Oceanogr.. 181 (2020): 102242.
Résumé: The Mediterranean Sea (MS) is a semi-enclosed sea characterized by a zonal west-east gradient of oligotrophy, where microbial growth is controlled by phosphate availability in most situations. External inputs of nutrients including Gibraltar inputs, river inputs and atmospheric deposition are therefore of major importance for the biogeochemistry of the MS. The latter has long been considered to be driven mainly by nutrient exchanges at Gibraltar. However, recent studies indicate that river inputs significantly affect nutrients concentrations in the Mediterranean Sea, although their resulting impact on its biogeochemistry remains poorly understood. In this study, our aim was to help fill this knowledge gap by addressing the large-scale and long-term impact of variations in river inputs on the biogeochemistry of the Mediterranean Sea over the last decades, using a coupled physical-biogeochemical 3D model (NEMO-MED12/Eco3M-Med). As a first result, it has been shown by the model that the strong diminution (60%) of phosphate (PO4) in river inputs into the Mediterranean Sea since the end of the 1980s induced a significant lowering of PO4 availability in the sub-surface layer of the Eastern Mediterranean Basin (EMB). One of the main consequences of PO4 diminution is the rise, never previously documented, of dissolved organic carbon (DOC) concentrations in the surface layer (by 20% on average over the EMB). Another main result concerns the gradual deepening of the top of the phosphacline during the period studied, thus generating a shift between the top of the nitracline and the top of the phosphacline in the EMB. This shift has already been observed in situ and documented in literature, but we propose here a new explanation for its occurrence in the EMB. The last main result is the evidence of the decline in abundance and the reduction of size of copepods calculated by the model over the years 1985-2010, that could partially explain the reduction in size of anchovy and sardine recently recorded in the MS. In this study, it is shown for the first time that the variations in river inputs that occurred in the last decades may have significantly altered the biogeochemical cycles of two key elements (P and C), in particular in the EMB. To conclude, the magnitude of the biogeochemical changes induced by river inputs and runoff alone over the last thirty years clearly calls for the use of realistic scenarios of river inputs along with climate scenarios for coupled physical-biogeochemical forecasts in the MS.
|
|
2019 |
Galès, A., et al. "Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates." Algal Research. 40 (2019): 101508.
Résumé: Several studies focused on wastewater treatment in High Rate Algal Ponds (HRAP) suggest that highly variable climatic conditions cause large variations of microalgal biomass productivity. In the present study, we show that similar carbon, nitrogen and phosphorus removal efficiencies were reached in different HRAPs treating urban wastewaters located in two different temperate (Mediterranean and oceanic) climates. Furthermore, similar ecological successions were observed in these HRAPs. During the start-up phase, the consumption of organic matter by detritivores, already present in the wastewater, appears to be necessary for the microalgae to grow within two weeks in spring. The growth of the rapid-growing species, Chlorella sp., followed by the grazing-resilient species, Scenedesmus sp., combined with nitrifying and denitrifying bacterial activity, removed most the ammonia. The resulting exhaustion of ammonia would limit the complete removal of dissolved COD by bacteria and phosphate by microalgae in the HRAPs. This study shows that similar biological and environmental constraints were applied on the HRAPs, making the process efficiency highly reproducible under different temperate latitudes.
|
|
2016 |
Gounand, I., et al. "Size evolution in microorganisms masks trade-offs predicted by the growth rate hypothesis." Proc. R. Soc. B-Biol. Sci.. 283.1845 (2016): 20162272.
Résumé: Adaptation to local resource availability depends on responses in growth rate and nutrient acquisition. The growth rate hypothesis (GRH) suggests that growing fast should impair competitive abilities for phosphorus and nitrogen due to high demand for biosynthesis. However, in microorganisms, size influences both growth and uptake rates, which may mask trade-offs and instead generate a positive relationship between these traits (size hypothesis, SH). Here, we evolved a gradient of maximum growth rate (mu(max)) from a single bacterium ancestor to test the relationship among mu(max), competitive ability for nutrients and cell size, while controlling for evolutionary history. We found a strong positive correlation between mu(max) and competitive ability for phosphorus, associated with a trade-off between mu(max) and cell size: strains selected for high mu(max) were smaller and better competitors for phosphorus. Our results strongly support the SH, while the trade-offs expected under GRH were not apparent. Beyond plasticity, unicellular populations can respond rapidly to selection pressure through joint evolution of their size and maximum growth rate. Our study stresses that physiological links between these traits tightly shape the evolution of competitive strategies.
|
|
Sebastian, M., et al. "Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency." Isme J.. 10.4 (2016): 968–978.
Résumé: Upon phosphorus (P) deficiency, marine phytoplankton reduce their requirements for P by replacing membrane phospholipids with alternative non-phosphorus lipids. It was very recently demonstrated that a SAR11 isolate also shares this capability when phosphate starved in culture. Yet, the extent to which this process occurs in other marine heterotrophic bacteria and in the natural environment is unknown. Here, we demonstrate that the substitution of membrane phospholipids for a variety of non-phosphorus lipids is a conserved response to P deficiency among phylogenetically diverse marine heterotrophic bacteria, including members of the Alphaproteobacteria and Flavobacteria. By deletion mutagenesis and complementation in the model marine bacterium Phaeobacter sp. MED193 and heterologous expression in recombinant Escherichia coli, we confirm the roles of a phospholipase C (PlcP) and a glycosyltransferase in lipid remodelling. Analyses of the Global Ocean Sampling and Tara Oceans metagenome data sets demonstrate that PlcP is particularly abundant in areas characterized by low phosphate concentrations. Furthermore, we show that lipid remodelling occurs seasonally and responds to changing nutrient conditions in natural microbial communities from the Mediterranean Sea. Together, our results point to the key role of lipid substitution as an adaptive strategy enabling heterotrophic bacteria to thrive in the vast P-depleted areas of the ocean.
|
|
2011 |
Desvignes, T., C. Fauvel, and J. Bobe. "The nme gene family in zebrafish oogenesis and early development." Naunyn-Schmiedebergs Arch. Pharmacol.. 384.4-5 (2011): 439–449.
Résumé: After the recent report of the expression of several nme genes in the zebrafish gonads, the present study aimed at further analyzing the expression of nme genes in the ovary with special attention for the nme transcripts that are maternally inherited and could thus participate in the determination of oocyte developmental competence. The expression levels of all groups I and II nme genes were characterized by QPCR in a panel of zebrafish tissues. The nme genes exhibiting an ovarian expression were subsequently monitored throughout oogenesis and early development, and their expression sites characterized using in situ hybridization. Here, we show that nme2b1, nme3, nme4, and nme6 are highly expressed in the ovary and present in the zebrafish oocyte throughout oogenesis. While the four transcripts are maternally inherited, nme3 and nme6 display a typical maternal profile and are detected in the zebrafish early embryo. In contrast to nme3, nme6, abundance exhibits a sharp decrease during early embryogenesis. After zygotic genome activation, we observed an increased expression of nme2b1, nme2b2, nme3, and nme6. The present study provides a comprehensive overview of the expression of nme family members during zebrafish oogenesis and early development. In addition, the maternal origin of two nme transcripts in the early embryo is reported here for the first time in any vertebrate species. Together, our observations suggest an important role of the nme family in oocyte and embryo development in vertebrates.
|
|