Durant, J. M., Molinero, J. - C., Ottersen, G., Reygondeau, G., Stige, L. C., & Langangen, O. (2019). Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Sci Rep, 9, 15213.
Résumé: In high-latitude marine environments, primary producers and their consumers show seasonal peaks of abundance in response to annual light cycle, water column stability and nutrient availability. Predatory species have adapted to this pattern by synchronising life-history events such as reproduction with prey availability. However, changing temperatures may pose unprecedented challenges by decoupling the predator-prey interactions. Here we build a predator-prey model accounting for the full life-cycle of fish and zooplankton including their phenology. The model assumes that fish production is bottom-up controlled by zooplankton prey abundance and match or mismatch between predator and prey phenology, and is parameterised based on empirical findings of how climate influences phenology and prey abundance. With this model, we project possible climate-warming effects on match-mismatch dynamics in Arcto-boreal and temperate biomes. We find a strong dependence on synchrony with zooplankton prey in the Arcto-boreal fish population, pointing towards a possible pronounced population decline with warming because of frequent desynchronization with its zooplankton prey. In contrast, the temperate fish population appears better able to track changes in prey timing and hence avoid strong population decline. These results underline that climate change may enhance the risks of predator-prey seasonal asynchrony and fish population declines at higher latitudes.
|
Shiganova, T. A., Sommer, U., Javidpour, J., Molinero, J. C., Malej, A., Kazmin, A. S., et al. (2019). Patterns of invasive ctenophore Mnemiopsis leidyi distribution and variability in different recipient environments of the Eurasian seas: A review. Marine Environmental Research, , 104791.
Résumé: Harmful invader ctenophore Mnemiopsis leidyi's expansions in the Eurasian Seas, its spatio-temporal population dynamics depending on environmental conditions in recipient habitats have been synthesized. M. leidyi found suitable temperature, salinity and productivity conditions in the temperate and subtropical environments of the semi-enclosed seas, in the coastal areas of open basins and in closed water bodies, where it created autonomous populations. M. leidyi changes its phenology depending on seasonal temperature regime in different environments. We assessed ranges of sea surface temperature, sea surface salinity and sea surface chlorophyll values, sufficient for M. leidyi general occurrence and reproduction based on comprehensive long-term datasets, contributed by co-authors. This assessment revealed that there are at least two eco-types (Southern and Northern) in the recipient seas of Eurasia with features specific for their donor areas. The range of thresholds for M. leidyi establishment, occurrence and life cycle in both eco-types depends on variability of environmental parameters in their native habitats.
|