2019 |
de Verdal, H., et al. "Agonistic behaviour and feed efficiency in juvenile Nile tilapia Oreochromis niloticus." Aquaculture. 505 (2019): 271–279.
Résumé: Given the strong effects of behavioural hierarchies on growth in many cultured species and the key role of feed efficiency in aquaculture economics, understanding the nature of the interaction of these variables is important for the sustainability of aquaculture. The relationship between agonistic behaviour, growth and feed efficiency in Nile tilapia, Oreochromis niloticus, was studied by rearing 120 fish in eight aquaria. Fish were video-recorded to estimate the occurrence of agonistic behaviour during a fasting and a refeeding period. Growth, feed intake and feed conversion efficiency (FCE – calculated as the inverse of feed conversion ratio (FCR)) were subsequently measured individually for each fish. Fish showed 58% less agonistic traits during the fasting period compared to the feeding period, but generally, an aggressive fish during the fasting period was also aggressive during the refeeding period. The nature of agonistic behaviours between individuals was used to assess the presence of hierarchical relationships between fish. There were dominance hierarchies established in each experimental aquarium that despite minor shifts were maintained throughout the experiment. Agonistic behaviours were strongly correlated with each other, the aggression Index (AI) and with hierarchy rank. PCA analysis of the agonistic behaviours summarising the behavioural information showed little or no correlation between agonistic behaviour, fish growth or FCE. FCE was correlated with body weight gain (BWG). These results suggest that agonistic interactions in juvenile Nile tilapia do not have a large impact on growth and feed conversion efficiency.
|
|
Fu, C., et al. "Making ecological indicators management ready: Assessing the specificity, sensitivity, and threshold response of ecological indicators." Ecological Indicators. 105 (2019): 16–28.
Résumé: Moving toward ecosystem-based fisheries management (EBFM) necessitates a suite of ecological indicators that are responsive to fishing pressure, capable of tracking changes in the state of marine ecosystems, and related to management objectives. In this study, we employed the gradient forest method to assess the performance of 14 key ecological indicators in terms of specificity, sensitivity and the detection of thresholds for EBFM across ten marine ecosystems using four modelling frameworks (Ecopath with Ecosim, OSMOSE, Atlantis, and a multi-species size-spectrum model). Across seven of the ten ecosystems, high specificity to fishing pressure was found for most of the 14 indicators. The indicators biomass to fisheries catch ratio (B/C), mean lifespan and trophic level of fish community were found to have wide utility for evaluating fishing impacts. The biomass indicators, which have been identified as Essential Ocean Variables by the Global Ocean Observing System (GOOS), had lower performance for evaluating fishing impacts, yet they were most sensitive to changes in primary productivity. The indicator B/C was most sensitive to low levels of fishing pressure with a generally consistent threshold response around 0.4*FMSY (fishing mortality rate at maximum sustainable yield) across nine of the ten ecosystems. Over 50% of the 14 indicators had threshold responses at, or below ∼0.6* FMSY for most ecosystems, indicating that these ecosystems would have already crossed a threshold for most indicators when fished at FMSY. This research provides useful insights on the performance of indicators, which contribute to facilitating the worldwide move toward EBFM.
|
|
Teulier, L., et al. "Muscle bioenergetics of two emblematic Mediterranean fish species: Sardina pilchardus and Sparus aurata." Comp. Biochem. Physiol. A-Mol. Integr. Physiol.. 235 (2019): 174–179.
Résumé: We investigated links between swimming behavior and muscle bioenergetics in two emblematic Mediterranean fish species that have very different ecologies and activity levels. European sardines Sardina pilchardus are pelagic, they swim aerobically, school constantly and have high muscle fat content. Gilthead seabream Sparus aurata are bentho-pelagic, they show discontinuous spontaneous swimming patterns and store less fat in their muscle. Estimating the proportion of red and white muscle phenotypes, sardine exhibited a larger proportion of red muscle (similar to 10% of the body mass) compared to gilthead seabream (similar to 5% of the body mass). We firstly studied red and white muscle fiber bioenergetics, using high-resolution respirometers, showing a 4-fold higher oxidation capacity for red compared to white muscle. Secondly, we aimed to compare the red muscle ability to oxidize either lipids or carbohydrates. Sardine red muscle had a 3-fold higher oxidative capacity than gilthead seabream and a greater capacity to oxidize lipids. This study provides novel insights into physiological mechanisms underlying the different lifestyles of these highly-prized species.
|
|
2018 |
Legradi, J. B., et al. "An ecotoxicological view on neurotoxicity assessment." Environ. Sci Eur.. 30 (2018): 46.
Résumé: The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems.
|
|
Li, M., et al. "Nitrogen and organic matter removal and enzyme activities in constructed wetlands operated under different hydraulic operating regimes." Aquaculture. 496 (2018): 247–254.
Résumé: Constructed wetlands (CWs) are environmentally-friendly methods for mariculture wastewater purification. The hydraulic regime is a key factor in the effectiveness of sub-surface flow CW treatment. The objectives of this study were to investigate the effects of five hydraulic operating regimes (i.e. Intermittent, Continuous, Batch I, Batch II and Batch III) on the purification performance of CW treated with mariculture wastewater and to assess the correlations between enzyme activities (i.e. urease, dehydrogenase) and purification performance of CW. Fifteen pilot sub-surface CWs with Salicornia bigelovii were investigated for the performance of CW as well as urease activity (UA) and dehydrogenase activity (DA). Over the experiment, removal efficiencies of TAN, NO3−-N, TN and COD under five hydraulic operating regimes were 26.6 to 37.2%, −6.0 to 16.5%, 9.4 to 16.8% and 33.9 to 44.6% respectively, corresponding to removal rates of 147.6 to 456.9 mg m−2 d−1, −18.1 to 229.2 mg m−2 d−1, 174.0 to 603.6 mg m−2 d−1 and 501.9 to 1421.6 mg m−2 d−1 respectively. CW with a Batch III operating regime had the best treatment performance, with mean removal efficiencies of TAN, NO3−-N, TN and COD of 37.2%, 16.5%, 14.9% and 34.0% respectively, with the corresponding removal rates of 456.9, 229.2, 603.6 and 873.6 mg m−2 d−1. As for enzyme activities, the UA was significantly higher in CW under Batch II than in Intermittent and Continuous operating regimes and the DA in CW with Batch I was significantly higher than under an Intermittent operating regime. UA and DA had significant positive correlations with COD concentrations but negative correlations with TAN and TN concentrations. The correlation analysis results showed that UA and DA can be an important indicator in evaluating removal performance of CW with Salicornia bigelovii in marine aquaculture wastewater treatment.
|
|
Shin, Y. - J., et al. "The specificity of marine ecological indicators to fishing in the face of environmental change: A multi-model evaluation." Ecological Indicators. 89 (2018): 317–326.
Résumé: Ecological indicators are widely used to characterise ecosystem health. In the marine environment, indicators have been developed to assess the ecosystem effects of fishing to support an ecosystem approach to fisheries. However, very little work on the performance and robustness of ecological indicators has been carried out. An important aspect of robustness is that indicators should respond specifically to changes in the pressures they are designed to detect (e.g. fishing) rather than changes in other drivers (e.g. environment). We adopted a multi-model approach to compare and test the specificity of commonly used ecological indicators to capture fishing effects in the presence of environmental change and under different fishing strategies. We tested specificity in the presence of two types of environmental change: “random”, representing interannual climate variability and “directional”, representing climate change. We used phytoplankton biomass as a proxy of the environmental conditions, as this driver was comparable across all ecosystem models, then applied a signal-to-noise ratio analysis to test the specificity of indicators with random environmental change. For directional change, we used mean gradients to apportion the quantity of change in the indicators due to fishing and the environment. We found that depending on the fishing strategy and environmental change, ecological indicators could range from high to low specificity to fishing. As expected, the specificity of indicators to fishing almost always decreased as environmental variability increased. In 55–76% of the scenarios run with directional change in phytoplankton biomass across fishing strategies and ecosystem models, indicators were significantly more responsive to changes in fishing than to changes in phytoplankton biomass. This important result makes the tested ecological indicators good candidates to support fisheries management in a changing environment. Among the indicators, the catch over biomass ratio was most often the most specific indicator to fishing, whereas mean length was most often the most sensitive to change in phytoplankton biomass. However, the responses of indicators were highly variable depending on the ecosystem and fishing strategy under consideration. We therefore recommend that indicators should be tested in the particular ecosystem before they are used for monitoring and management purposes.
|
|
2017 |
Fiandrino, A., et al. "Spatial patterns in coastal lagoons related to the hydrodynamics of seawater intrusion." Mar. Pollut. Bull.. 119.1 (2017): 132–144.
Résumé: Marine intrusion was simulated in a choked and in a restricted coastal lagoon by using a 3D-hydrodynamic model. To study the spatiotemporal progression of seawater intrusion and its mixing efficiency with lagoon waters we define Marine Mixed Volume (V-MM) as a new hydrodynamic indicator. Spatial patterns in both lagoons were described by studying the time series and maps of VMM taking into account the meteorological conditions encountered during a water year. The patterns comprised well-mixed zones (WMZ) and physical barrier zones (PBZ) that act as hydrodynamic boundaries. The choked Bages-Sigean lagoon comprises four sub-basins: a PBZ at the inlet, and two WMZ's separated by another PBZ corresponding to a constriction zone. The volumes of the PBZ were 2.1 and 5.4 millions m(3) with characteristic mixing timescale of 68 and 84 days, respectively. The WMZ were 123 and 433 millions m(3) with characteristics mixing timescale of 70 and 39 days, respectively. (C) 2017 Elsevier Ltd. All rights reserved.
|
|
Lefevre, S., D. J. Mckenzie, and G. E. Nilsson. "Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms." Glob. Change Biol.. 23.9 (2017): 3449–3459.
Résumé: Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas from growing as fast as body volume. It is argued that these constraints explain allometric scaling of energy metabolism, whereby larger fishes have relatively lower mass-specific metabolic rates. Assumption (ii) concludes that when fishes reach a certain size, basal oxygen demands will not be met, because of assumption (i). We here demonstrate unequivocally, by applying accepted physiological principles with reference to the existing literature, that these assumptions are not valid. Gills are folded surfaces, where the scaling of surface area to volume is not constrained by spherical geometry. The gill surface area can, in fact, increase linearly in proportion to gill volume and body mass. We cite the large body of evidence demonstrating that respiratory surface areas in fishes reflect metabolic needs, not vice versa, which explains the large interspecific variation in scaling of gill surface areas. Finally, we point out that future studies basing their predictions on models should incorporate factors for scaling of metabolic rate and for temperature effects on metabolism, which agree with measured values, and should account for interspecific variation in scaling and temperature effects. It is possible that some fishes will become smaller in the future, but to make reliable predictions the underlying mechanisms need to be identified and sought elsewhere than in geometric constraints on gill surface area. Furthermore, to ensure that useful information is conveyed to the public and policymakers about the possible effects of climate change, it is necessary to improve communication and congruity between fish physiologists and fisheries scientists.
|
|
Xing, L., et al. "An individual-based model for simulating the ecosystem dynamics of Jiaozhou Bay, China." Ecological Modelling. 360.Supplement C (2017): 120–131.
Résumé: The Object-oriented Simulator of Marine ecoSystem Exploitation (OSMOSE) is one of the end-to-end models developed for ecosystem dynamic simulation and management strategy evaluation (MSE) in support of ecosystem-based fishery management (EBFM). However, the implementation of such integrated models has been limited due to lack of data, and their performance in advising fisheries management has been rarely evaluated. We developed an end-to-end model (OSMOSE-JZB) representing organisms of high and low trophic levels in the Jiaozhou Bay, a temperate bay in China with limited available data. We evaluated the performance of the model for simulating the ecosystem dynamics by comparing the model-predicted species biomass, size structure, trophic level, and mortality with relevant data derived from scientific surveys and literature. In general, the model-predicted species biomass and size ranges were consistent with observations. However, the size structure of the two dominant fish species showed some discrepancies between the model simulations and observations. The predicted mean trophic levels from OSMOSE-JZB were closer to the values derived from an Ecopath model of the same region, compared to the values derived from empirical isotope analysis. The model's output suggested that predation mortality appeared to be the main source of mortality for younger individuals compared to starvation and fishing mortality. This study suggests that the OSMOSE-JZB performs well under a data-poor situation and can be considered as a baseline ecosystem model for developing EBFM.
|
|
2016 |
Poisson, F., et al. "Technical mitigation measures for sharks and rays in fisheries for tuna and tuna-like species: turning possibility into reality." Aquat. Living Resour.. 29.4 (2016): 402.
Résumé: Tuna fisheries have been identified as one of the major threats to populations of other marine vertebrates, including sea turtles, sharks, seabirds and marine mammals. The development of technical mitigation measures (MM) in fisheries is part of the code of conduct for responsible fisheries. An in-depth analysis of the available literature regarding bycatch mitigation in tuna fisheries with special reference to elasmobranchs was undertaken. Studies highlighting promising MMs were reviewed for four tuna fisheries (longline, purse seine, driftnets and gillnet, and rod and line – including recreational fisheries). The advantages and disadvantages of different MMs are discussed and assessed based on current scientific knowledge. Current management measures for sharks and rays in tuna Regional Fishery Management Organizations (t-RFMOs) are presented. A review of relevant studies examining at-vessel and postrelease mortality of elasmobranch bycatch is provided. This review aims to help fisheries managers identify pragmatic solutions to reduce mortality on pelagic elasmobranchs (and other higher vertebrates) whilst minimizing impacts on catches of target tuna species. Recent research efforts have identified several effective MMs that, if endorsed by t-RFMOs, could reduce elasmobranchs mortality rate in international tropical purse seine tuna fisheries. In the case of longline fisheries, the number of operational effective MMs is very limited. Fisheries deploying driftnets in pelagic ecosystems are suspected to have a high elasmobranchs bycatch and their discard survival is uncertain, but no effective MMs have been field validated for these fisheries. The precautionary bans of such gear by the EU and by some t-RFMOs seem therefore appropriate. Recreational tuna fisheries should be accompanied by science-based support to reduce potential negative impacts on shark populations. Priorities for research and management are identified and discussed.
|
|
2015 |
Le Vaillant, M., et al. "Telomere length reflects individual quality in free-living adult king penguins." Polar Biol. 38.12 (2015): 2059–2067.
Résumé: Growing evidence suggests that telomeres, non-coding DNA sequences that shorten with age and stress, are related in an undefined way to individual breeding performances and survival rates in several species. Short telomeres and elevated shortening rates are typically associated with life stress and low health. As such, telomeres could serve as an integrative proxy of individual quality, describing the overall biological state of an individual at a given age. Telomere length could be associated with the decline of an array of physiological traits in age-controlled individuals. Here, we investigated the links between individuals’ relative telomere length, breeding performance and various physiological (body condition, natural antibody levels) and life history (age, past breeding success) parameters in a long-lived seabird species, the king penguin Aptenodytes patagonicus. While we observed no link between relative telomere length and age, we found that birds with longer telomeres arrived earlier for breeding at the colony, and had higher breeding performances (i.e. the amount of time adults managed to maintain their chicks alive, and ultimately breeding success) than individuals with shorter telomeres. Further, we observed a positive correlation between telomere length and natural antibody levels. Taken together, our results add to the growing evidence that telomere length is likely to reflect individual quality difference in wild animal.
|
|
2014 |
Killen, S. S., S. Marras, and D. J. McKenzie. "Fast growers sprint slower: effects of food deprivation and re-feeding on sprint swimming performance in individual juvenile European sea bass." Journal of Experimental Biology. 217.6 (2014): 859–865.
Résumé: While many ectothermic species can withstand prolonged fasting without mortality, food deprivation may have sublethal effects of ecological importance, including reductions in locomotor ability. Little is known about how such changes in performance in individual animals are related to either mass loss during food deprivation or growth rate during re-feeding. This study followed changes in the maximum sprint swimming performance of individual European sea bass, Dicentrarchus labrax, throughout 45 days of food deprivation and 30 days of re-feeding. Maximum sprint speed did not show a significant decline until 45 days of food deprivation. Among individuals, the reduction in sprinting speed at this time was not related to mass loss. After 30 days of re-feeding, mean sprinting speed had recovered to match that of control fish. Among individuals, however, maximum sprinting speed was negatively correlated with growth rate after the resumption of feeding. This suggests that the rapid compensatory growth that occurs during re-feeding after a prolonged fast carries a physiological cost in terms of reduced sprinting capacity, the extent of which shows continuous variation among individuals in relation to growth rate. The long-term repeatability of maximum sprint speed was low when fish were fasted or fed a maintenance ration, but was high among control fish fed to satiation. Fish that had been previously food deprived continued to show low repeatability in sprinting ability even after the initiation of ad libitum feeding, probably stemming from variation in compensatory growth among individuals and its associated negative effects on sprinting ability. Together, these results suggest that food limitation can disrupt hierarchies of maximum sprint performance within populations. In the wild, the cumulative effects on locomotor capacity of fasting and re-feeding could lead to variable survival among individuals with different growth trajectories following a period of food deprivation.
|
|
Li, X., et al. "Effect of oxidation-reduction potential on performance of European sea bass (Dicentrarchus labrax) in recirculating aquaculture systems." Aquaculture International. 22.4 (2014): 1263–1282.
Résumé: The direct impact of oxidation-reduction potential (ORP) on fish welfare and water quality in marine recirculating aquaculture systems (RAS) is poorly documented. In this study, the effects of the fish size (S-1, S-2, S-3) and ORP level (normal, four successive levels) on the performance of European sea bass (Dicentrarchus labrax) were investigated. Three size fish were distributed into two RAS (RAS and RAS O-3). Ozone was injected into RAS O-3 to increase the ORP level. The ORP was stabilized to four successive levels: 260-300, 300-320, 320-350, and 300-320 mV in fish tanks during four periods (P1-4). At the last day of each period, the hematological parameters, plasma protein and mortality of sea bass were analyzed. Two-way ANOVA revealed that several hematological parameters, including pH, hematocrit, concentrations of oxygen, carbon dioxide, glucose (Glu), ionized calcium, kalium, and hemoglobin, were significantly influenced by the increased ORP levels over the experimental period. The alteration in blood Glu and plasma protein concentration showed that ORP around 300-320 mV started to stress sea bass. Once the ORP exceeded 320 mV in the tanks during the P-3 period, mortality occurred even when total residual oxidants/ozone-produced oxidants was only 0.03-0.05 mg L-1 in the fish tanks. At the same time, plasma protein decreased notably due to appetite depression. After the decrease in ORP during the P-4 period, mortality continued. In conclusion, the results strongly suggest that for European sea bass in RAS, the ORP should not exceed 320 mV in the tanks. Once ozonation damaged fish, the effect seemed to be irreversible. However, how ORP affected related hematological parameters still need the further investigations.
|
|
Wang, T., et al. "Anaemia only causes a small reduction in the upper critical temperature of sea bass: is oxygen delivery the limiting factor for tolerance of acute warming in fishes?" Journal of Experimental Biology. 217.24 (2014): 4275–4278.
Résumé: To address how the capacity for oxygen transport influences tolerance of acute warming in fishes, we investigated whether a reduction in haematocrit, by means of intra-peritoneal injection of the haemolytic agent phenylhydrazine, lowered the upper critical temperature of sea bass. A reduction in haematocrit from 42 +/- 2% to 20 +/- 3% (mean +/- s.e.m.) caused a significant but minor reduction in upper critical temperature, from 35.8 +/- 0.1 to 35.1 +/- 0.2 degrees C, with no correlation between individual values for haematocrit and upper thermal limit. Anaemia did not influence the rise in oxygen uptake between 25 and 33 degrees C, because the anaemic fish were able to compensate for reduced blood oxygen carrying capacity with a significant increase in cardiac output. Therefore, in sea bass the upper critical temperature, at which they lost equilibrium, was not determined by an inability of the cardio-respiratory system to meet the thermal acceleration of metabolic demands.
|
|
2012 |
Larsen, B. K., et al. "The effects of stocking density and low level sustained exercise on the energetic efficiency of rainbow trout (Oncorhynchus mykiss) reared at 19 degrees C." Aquaculture. 324 (2012): 226–233.
Résumé: A 9 week growth trial was performed at two rearing densities; low (similar to 25 kg m(-3)) and high (similar to 100 kg m-3), in combination with either static water or a water current corresponding to 0.9 body lengths s(-1), to investigate the effects of density and exercise on the bioenergetics of rainbow trout reared at 19 degrees C, particularly routine metabolic rate (RMR), specific growth rate (SGR), and feed conversion ratio (FCR). The growth trial showed that high rearing density resulted in significantly lower SGR and increased FCR, with no significant alleviating effects of a water current, although slight improvement in both parameters were observed at low density. A significant linear relationship between SGR and FCR suggested that increased energy expenditure was the primary cause of reduced growth. Hourly measurements of instantaneous oxygen uptake, during a period of similar growth (200-350 g), revealed clear effects of the experimental conditions. Energetic budgets were calculated from feed intake and routine metabolic rate (RMR) and revealed that whilst feed intake was similar for all groups, a higher RMR in the high density groups resulted in a higher daily rate of energy utilization for routine activity, leading to slower growth. However, a lower RMR in fish subjected to a current resulted in a greater proportion of energy being retained, leading to significantly higher SGR for the selected period, at both low and high density. Furthermore, the presence of a water current was observed to induce schooling behaviour, which is known to reduce aggression and stress. It is thereby likely that the presence of a current had a positive effect on welfare in addition to its effect on energy metabolism. We conclude that the presence of a water current to some extent could alleviate the negative effects of high density at 19 degrees C, a relatively high temperature experienced in farming of rainbow trout during hot seasons. (C) 2011 Elsevier B.V. All rights reserved.
|
|
McKenzie, D. J., et al. "Effects of stocking density and sustained aerobic exercise on growth, energetics and welfare of rainbow trout." Aquaculture. 338 (2012): 216–222.
Résumé: Two stocking densities, “low” (L, between similar to 19 and similar to 25 kg m(-3)) and “high” (H, between similar to 75 and similar to 100 kg m(-3)) were compared for effects on specific growth rate (SGR), feed conversion, energetics and welfare of rainbow trout reared at 14 degrees C either in static water (S) or swimming in a gentle current of similar to 0.9 bodylengths s(-1) (C). Trout (initial mass similar to 110 g) were reared for 9 weeks in circular tanks (volume 0.6 m(3)), in triplicate of four conditions (LS, LC, HS, HC). Fish were fed ad-libitum daily: waste pellets were swirl-collected at the outflow to calculate feed intake. SGR was measured each three weeks for the last six weeks of the trial. The tanks functioned as intermittent-stopped flow respirometers, to permit metabolic rate to be measured as instantaneous oxygen uptake once per hour. Mean (+/-SD) SGR was significantly lower at H than L (1.51 +/- 0.03 vs 1.44 +/- 0.04% day(-1), respectively, n = 6) and lowest in HC. When compared over a similar interval of mass gain, H groups had approximately 25% higher metabolic rates than L, with the highest rates in the HC condition. As a result, fish in the H groups dissipated a greater amount of feed energy as metabolism and, across all groups, there was a direct negative relationship between the quantity of energy dissipated and their SCR. There was no evidence of a neuroendocrine stress response, plasma cortisol was around 1 ng ml(-1) in all conditions. An acute crowding stress increased plasma cortisol to above 120 ng ml(-1) in all groups, but C groups recovered to control levels within 8 h whereas S groups required 20 h. Respirometry on individuals revealed that H fish had approximately 14% higher metabolic rates than L fish, indicating that increased metabolic rate in rearing tanks was in part physiological. The H groups had approximately 15% lower critical swimming speeds than the L groups which, together with their raised metabolic rate, indicated a physiological impairment Thus, high density reduced SGR by raising energy dissipation, at least partially as a physiological response by the fish, although there was no evidence of an endocrine stress response. The only beneficial effect of C was in recovery from acute stress. (C) 2012 Elsevier B.V. All rights reserved.
|
|
McKenzie, D. J., et al. "The contribution of air breathing to aerobic scope and exercise performance in the banded knifefish Gymnotus carapo L." J. Exp. Biol.. 215.8 (2012): 1323–1330.
Résumé: The contribution of air breathing to aerobic metabolic scope and exercise performance was investigated in a teleost with bimodal respiration, the banded knifefish, submitted to a critical swimming speed (U-crit) protocol at 30 degrees C. Seven individuals (mean +/- s.e.m. mass 89 +/- 7. g, total length 230 +/- 4. mm) achieved a U-crit of 2.1 +/- 1. body. lengths. (BL). s(-1) and an active metabolic rate (AMR) of 350 +/- 21. mg. kg(-1). h(-1), with 38 +/- 6% derived from air breathing. All of the knifefish exhibited a significant increase in air-breathing frequency (f(AB)) with swimming speed. If denied access to air in normoxia, these individuals achieved a U-crit of 2.0 +/- 0.2. BL. s(-1) and an AMR of 368 +/- 24. mg. kg(-1). h(-1) by gill ventilation alone. In normoxia, therefore, the contribution of air breathing to scope and exercise was entirely facultative. In aquatic hypoxia (P-O2=4. kPa) with access to normoxic air, the knifefish achieved a U-crit of 2.0 +/- 0.1. BL. s(-1) and an AMR of 338 +/- 29. mg. kg(-1). h(-1), similar to aquatic normoxia, but with 55 +/- 5% of AMR derived from air breathing. Indeed, f(AB) was higher than in normoxia at all swimming speeds, with a profound exponential increase during exercise. If the knifefish were denied access to air in hypoxia, U-crit declined to 1.2 +/- 0.1. BL. s(-1) and AMR declined to 199 +/- 29. mg. kg(-1). h(-1). Therefore, air breathing allowed the knifefish to avoid limitations to aerobic scope and exercise performance in aquatic hypoxia.
|
|
2011 |
Marras, S., et al. "Behavioural and kinematic components of the fast-start escape response in fish: individual variation and temporal repeatability." J. Exp. Biol.. 214.18 (2011): 3102–3110.
Résumé: Inter-individual variation in physiological performance traits, which is stable over time, can be of potential ecological and evolutionary significance. The fish escape response is interesting in this regard because it is a performance trait for which inter-individual variation may determine individual survival. The temporal stability of such variation is, however, largely unexplored. We quantified individual variation of various components of the escape response in a population of European sea bass (Dicentrarchus labrax), considering both non-locomotor (responsiveness and latency) and locomotor (speed, acceleration, turning rate, turning angle and distance travelled in a fixed time, D(esc)) variables. We assessed whether variation in performance was temporally stable and we searched for any trade-offs among the components of the response that might explain why the variation persisted in the population. The coefficient of variation was high for all components, from 23% for turning rate to 41% for D(esc), highlighting the non-stereotypic nature of the response. Individual performance for all variables was significantly repeatable over five sequential responses at 30min intervals, and also repeatable after a 30 day interval for most of the components. This indicates that the variation is intrinsic to the individuals, but there was no evidence for trade-offs amongst the components of the response, suggesting that, if trade-offs exist, they must be against other ecologically important behavioural or performance traits.
|
|
2010 |
Iversen, N. K., et al. "Autonomic regulation of the heart during digestion and aerobic swimming in the European sea bass (Dicentrarchus labrax)." Comp. Biochem. Physiol. A-Mol. Integr. Physiol.. 156.4 (2010): 463–468.
Résumé: The autonomic regulation of the heart was studied in European sea bass (Dicentrarchus labrax) during digestion and aerobic exercise by measuring cardiac output (Q), heart rate (f(H)), stroke volume (V(s)) and oxygen consumption (MO(2)) before and after pharmacological blockade by intraperitoneal injections of atropine and propranolol. The significant rise in MO(2) (134 +/- 14 to 174 +/- 14 mg kg(-1) h(-1)) 6 h after feeding (3% body mass) caused a significant tachycardia (47.7 +/- 10.9 to 72.6 +/- 7.2 beats min(-1)), but only a small elevation of Q. MO(2) of fasting fish increased progressively with swimming speed (0.7-2.1 BL s(-1)) causing a significant tachycardia (43 +/- 6 to 61 +/- 4 mL min(-1) kg(-1)) and increased Q but V(s) did not change. Inactive fish were characterized by a high vagal tone (98.3 +/- 21.7%), and the tachycardia during digestion and exercise was exclusively due to a reduction of vagal tone, while the adrenergic tone remained low during all conditions. Intrinsic f(H), revealed after double autonomic blockade, was not affected by digestion (71 +/- 4 and 70 +/- 6 min(-1), respectively), indicating that non-adrenergic, non-cholinergic (NANC) factors do not contribute to the tachycardia during digestion in sea bass. (C) 2010 Elsevier Inc. All rights reserved.
|
|
Jourdan-Pineau, H., et al. "An Investigation of Metabolic Prioritization in the European Sea Bass, Dicentrarchus labrax." Physiol. Biochem. Zool.. 83.1 (2010): 68–77.
Résumé: We investigated the ability of European sea bass (Dicentrarchus labrax) to respond simultaneously to the metabolic demands of specific dynamic action (SDA) and aerobic exercise and how this was influenced by moderate hypoxia (50% air saturation). At 3 h after feeding in normoxia at 20 degrees C, SDA raised the instantaneous oxygen uptake (Mo(2)) of sea bass by 47% +/- 18% (mean +/- SEM, N = 7) above their standard metabolic rate (SMR) when fasted. This metabolic load was sustained throughout an incremental exercise protocol until fatigue, with a 14% +/- 3% increase in their maximum aerobic metabolic rate (MMR) relative to their fasted rate. Their incremental critical swimming speed (U(crit)) did not differ between fasted and fed states. Thus, in normoxia, the bass were able to meet the combined oxygen demands of SDA and aerobic exercise. In hypoxia, the sea bass suffered a significant decline in MMR and U(crit) relative to their normoxic performance. The SDA response was similar to normoxia (84% +/- 24% above fasted SMR at 3 h after feeding), but although this load was sustained at low swimming speeds, it gradually disappeared as swimming speed increased. As a result, the hypoxic sea bass exhibited no difference in their fasted versus fed MMR. Hypoxic U(crit) did not, however, differ between fasted and fed states, indicating that the sea bass deferred their SDA to maintain exercise performance. The results demonstrate that, in normoxia, the sea bass possesses excess cardiorespiratory capacity beyond that required for maximal aerobic exercise. The excess capacity is lost when oxygen availability is limited in hypoxia, and, under these conditions, the sea bass prioritize exercise performance. Thus, environmental conditions (oxygen availability) had a significant effect on patterns of oxygen allocation in sea bass and revealed intrinsic prioritization among conflicting metabolic demands.
|
|
2009 |
McKenzie, D. J., et al. "Abolition of reflex bradycardia by cardiac vagotomy has no effect on the regulation of oxygen uptake by Atlantic cod in progressive hypoxia." Comp. Biochem. Physiol. A-Mol. Integr. Physiol.. 153.3 (2009): 332–338.
Résumé: The functional significance of chemoreflexive hypoxic bradycardia was explored in Atlantic cod Gadus morhua L. (mean mass similar to 800 g, acclimated to a seawater temperature of 11 degrees C) by investigating responses to progressive hypoxia following section of the cardiac branches of cranial nerve X Cardiac denervation had no effect on oxygen uptake rate (M(O2)), gill ventilation rate (f(G)) or opercular pressure amplitude (P(OP)) under normoxic conditions, but caused a significant increase in heart rate (f(H)), to 50 +/- 1 beats min(-1) by comparison to 40 +/- 2 beats min(-1) in sham-operated cod (mean +/- s.e.m., n=9). Sham-operated cod exhibited transient profound bradycardia following oxygen chemoreceptor stimulation by bolus injection of sodium cyanide into the buccal cavity (2 mg in 2 ml seawater), but this cardiac chemoreflex was abolished in denervated cod. Both groups, however, exhibited similar marked transient chemoreflexive hyperventilation following NaCN. When exposed from normoxia (PO(2)similar to 18 kPa) to progressive hypoxia at nominal water PO(2)'S of 8, 6, 5, 4 and 3 kPa, both groups exhibited the same pattern of homeostatic regulation of M(O2), with no significant difference in their mean critical PO(2) (P(crit)) values, which were 7.40 +/- 0.81 kPa and 8.73 +/- 0.71 kPa, respectively (n=9). Both groups exhibited significant bradycardia during progressive hypoxia, although denervated fish always had higher mean f(H). The incipient threshold for bradycardia coincided with P(crit) in sham-operated cod whereas, in denervates, the threshold was below their P(crit) and bradycardia presumably reflected direct effects of hypoxia on the myocardium. The sham-operated group displayed a significantly more pronounced ventilatory response than denervates in hypoxia, in particular for P(OP). In sham-operated cod, peak ventilatory responses occurred in deep hypoxia below P(crit) whereas, in denervates, more modest peak responses coincided with Pit and, in deep hypoxia, they exhibited a significant decline in f(G) below their normoxic rate. Only a minority of shams lost equilibrium in hypoxia whereas a majority of denervates did, some of which failed to recover. The results indicate that chemoreflexive bradycardia plays no role in the homeostatic regulation of oxygen uptake by cod in hypoxia, but does contribute to maintenance of overall functional integrity below P(crit). (C) 2009 Elsevier Inc. All rights reserved.
|
|
ROQUE D'ORBCASTEL, E., J. - P. BLANCHETON, and A. BELAUD. "Water quality and rainbow trout performance in a Danish Model Farm recirculating system: Comparison with a flow through system." Aquacultural Engineering. 40.3 (2009): 135–143.
Résumé: The objective was to compare water quality and fish growth and mortality in a pilot scale recirculating system (RS) and a control tank in flow through system (FTS). The RS was designed after the Danish Model Trout Farm and operated with a make Lip Water renewal rate of 9 m(3) kg(-1) of fish produced. RS water quality did not decrease significantly with water flow rate decrease in the RS. During the experiment, the RS water treatment system presented solids removal efficiency of 59.6 +/- 27.7% d(-1), ammonia oxidation of 45 +/- 32 g m(-3) d(-1), oxygenation yield of 392 +/- 132 g of O-2 kWh(-1) and CO2 degassing of 23.3 +/- 11.9% pass(-1). In the RS, nitrite concentration was 0.15 +/- 0.07 mg l(-1), close to the toxicity threshold; a N-2 supersaturation phenomenon was measured, probably due to the air injection depth. The biofilter and sedimentation area management has to be improved to avoid Organic matter decomposition and release of dissolved elements. Even if no N-2 over-saturation apparent effect on fish performance and aspect were detected, the airlift depth has to be modified in the case of industrial development of the RS. Some improvements of the water treatment system, especially on the airlift and sedimentation area, are suggested. Concerning fish growth, no significant differences were observed between the RS and the FTS. No pathologies were detected and cumulative mortality rates (0.1%) were similar to the farm's Usual data. There were no significant effects of water flow rate decrease in the RS on fish performance and energy savings were recorded to be 0.7 kWh kg(-1) of fish produced between RS1 and RS2. The global energy cost of the RS was 3.56 kWh kg(-1) of fish produced (0.107 (sic) kg(-1) of fish produced). Even if the energy consumption of the water treatment system can be improved, the results confirm that recirculating system can be used for industrial trout On growing, without fish performance deterioration. (C) 2009 Elsevier B.V. All rights reserved.
|
|
ROQUE D'ORBCASTEL, E., et al. "Comparative growth and welfare in rainbow trout reared in recirculating and flow through rearing systems." Aquacultural Engineering. 40.2 (2009): 79–86.
Résumé: The objective of this study was to compare fish performance and welfare at different stocking densities in a recirculating system (RS) and a flow through system (FTS) under field conditions. During the 77 days experiment, the fish survival rate was high (99.3%) and stocking density increased from 57 to 98108 kg m(-3). No significant differences in growth were observed between RS and FTS until day 56. Later, growth decreased in the FTS, while it remained similar to the farm reference at 50 kg m(-3) in the RS. Final weight was 17% higher in RS than in FTS. The maximum carrying capacity of the RS was near 100 kg m(-3), limited by NO2 increase up to safe level at the end of the experiment, the maximum carrying capacity of the FTS was near 85 kg m(-3), probably limited by CO2 concentration (17.8 +/- 5.7 mg l(-1)). In the RS, the relative length index of pectoral and dorsal fins was lower than in the FTS, which may be attributed to the tank hydrodynamics. In both systems, an improvement of the pectoral and dorsal profile was observed at the end of the experiment, attributed to a swimming activity reduction that may have decreased contact between individuals. In the RS, high caudal fin deterioration (50% versus 20% in FTS) was observed irrespective of stocking density, that could be linked to the highest water velocity modifying the fish swimming activity. The results confirm that when water quality is maintained in safe level ranges, high densities can be used in trout RS without fish performance and pectoral or dorsal fin deterioration, but with a major caudal impairment. (C) 2008 Elsevier B.V. All rights reserved.
|
|
SAMMOUTH, S., et al. "The effect of density on sea bass (Dicentrarchus labrax) performance in a tank-based recirculating system." Aquacultural Engineering. 40.2 (2009): 72–78.
Résumé: Sea bass (Dicentrarchus tabrax) (135 +/- 4 g) were reared under tank-based recirculating aquaculture system for a 63-day period at four densities: 10, 40, 70, 100 kg m(-3). Fish performance, stress indicators (plasma cortisol, proteonemia plus other blood parameters-Na+, K+, glucose, pH, total CO2- and water quality were monitored. At the end of the 63-day period, resistance to infection was also studied by a nodavirus challenge. A 25-day test was performed on fish from two extreme densities (10 and 100 kg m(3)) and one intermediate density (40 kg m(3)). With regards to the different density treatments, there was no significant difference between the daily feed intake (DFI) and the specific growth rate (SGR) up to a density of 70 kg m(-3). No significant difference was found between treatments concerning the feed conversion ratio (FCR) and the mortality rate. No density effect was observed on the fish stress level (plasma cortisol) or on sensitivity to the nodavirus challenge. Under these experimental rearing conditions, the density above 70 kg m(-3) has an impact on growth performance (DFI and SGR) indicators and also some blood parameters (CO2) at the highest density tested (100 kg m(-3)). This study suggests that a density up to 70 kg m(-3) has no influence on sea bass performance and welfare. At 100 kg m(-3), average specific growth rate was decreased by 14% without welfare deterioration according to the welfare indicators monitored. (C) 2008 Elsevier B.V. All rights reserved.
|
|