|
Araújo Abrantes de Figueiredo, G. G., Schwamborn, R., Bertrand, A., Munaron, J. - M., & Le Loc'h, F. (2020). Body size and stable isotope composition of zooplankton in the western tropical Atlantic. J. Mar. Syst., 212, 103449.
Résumé: Size-based approaches are paramount tools for the study of marine food webs. Here, we investigated the relationship between zooplankton body size, stable isotope composition and trophic level (TL) along a large-scale onshore-offshore gradient in the western tropical Atlantic. Samples were obtained on the Brazilian continental shelf, slope and in oceanic waters (off Fernando de Noronha archipelago and Rocas Atoll) in September and October 2015. Zooplankton was sieved into five size fractions. Zooplankton was dominated by copepods, except for the largest (> 2000 mu m) size fraction, that showed a high biovolume of chaetognaths, decapods, and fish larvae. Maximum zooplankton abundance and biovolume was found at the continental slope. POM showed consistently lower delta C-13 than zooplankton, indicating a selective use of C-13-rich primary food sources by zooplankton. Particulate organic matter (POM) was more C-13-enriched in shelf areas (average: -22.8, -23.6 and -24.3% at the shelf, slope and oceanic islands, respectively), probably due to the higher abundance of diatoms nearshore. POM had delta N-15 values between 2.5 and 6.9% (average: 4.0, 4.9 and 4.2% at the shelf, slope and oceanic islands, respectively). Zooplankton delta N-15 and TL increased with body size. The delta N-15 of the 200-500 mu m size fraction was used as baseline for TL estimation. Oceanic areas (average baseline delta N-15 = 5.8% +/- 0.52, n = 14) showed a higher baseline delta N-15 than the shelf (average = 3.9% +/- 0.69, n = 9) and the slope areas (average = 3.1% +/- 0.93, n = 9). In spite of differing baselines, the delta N-15 data produced a consistent pattern of log-linear increase in TL with increasing size, in all areas. The choice of input trophic enrichment factor (TEF) values only slightly changed the log10 (body size) vs TL slopes, but this choice had a considerable effect on the estimates of predator/prey size ratio (PPSR) and predator/prey mass ratio (PPMR). Using a TEF above 2.3 leads to unrealistic PPSR and PPMR estimates. Overall average slope was 0.59 +/- 0.08 TL mu m(-1) with TEF = 2.3 and 0.42 +/- 0.07 TL mu m(-1) with TEF = 3.2.
|
|
|
Auguet, J. C., & Casamayor, E. O. (2013). Partitioning of Thaumarchaeota populations along environmental gradients in high mountain lakes. FEMS Microbiology Ecology, 84(1), 154–164.
Résumé: We investigated the spatial distribution and diversity of ammonia-oxidizing Archaea (AOA) across gradients of pH, trophic status and altitude in a set of high mountain lakes (Limnological Observatory of the Pyrenees, north-east Spain). Both phylogeny- and taxonomy-based approaches revealed well-defined AOA community patterns with pH as the main potential driving environmental factor. The I.1a and SAGMGC-1 Thaumarchaeota clusters, and their potentially associated amoA gene variants (clusters Fresh 5 and Soil/Fresh 1, respectively) showed highest relative abundances in the most oligotrophic lakes. Euryarchaeota (i.e. HV-Fresh cluster, Methanomicrobiales and Thermoplasmatales) dominated in lakes with higher trophic status. Phylogenetic diversity (PD) in Pyrenean lakes was 1.5- to 2.3-fold higher than the PD from an equivalent number of globally distributed marine and soil sites. We observed segregated distributions for SAGMGC-1, preferentially distributed in the lakes with the lowest pH (< 5) and the highest nitrite concentration (> 0.12 μm), and I.1a in lakes with lower nitrite and dissolved organic carbon concentrations below 0.5 mg L-1. Overall, these results showed strong selection by local environmental conditions, unveiled new ecological niches for freshwater SAGMGC-1 in low pH oligotrophic lakes, and suggested specific and successful adaptations of planktonic archaea to the high mountain lakes landscape. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
|
|
|
Auguet, J. C., Borrego, C. M., Baneras, L., & Casamayor, E. O. (2008). Fingerprinting the genetic diversity of the biotin carboxylase gene (accC) in aquatic ecosystems as a potential marker for studies of carbon dioxide assimilation in the dark. Environ Microbiol, 10(10), 2527–2536.
Résumé: We designed and tested a set of specific primers for specific PCR amplification of the biotin carboxylase subunit gene (accC) of the Acetyl CoA carboxylase (ACCase) enzyme. The primer set yielded a PCR product of c. 460 bp that was suitable for denaturing gradient gel electrophoresis (DGGE) fingerprinting followed by direct sequencing of excised DGGE bands and sequence analysis. Optimization of PCR conditions for selective amplification was carried out with pure cultures of different bacteria and archaea, and laboratory enrichments. Next, fingerprinting comparisons were done in several aerobic and anaerobic freshwater planktonic samples. The DGGE fingerprints showed between 2 and 19 bands in the different samples, and the primer set provided specific amplification in both pure cultures and natural samples. Most of the samples had sequences grouped with bacterial accC, hypothetically related to the anaplerotic fixation of inorganic carbon. Some other samples, however, yielded accC gene sequences that clustered with Crenarchaeota and were related to the 3-hydroxypropionate/4-hydroxybutyrate cycle of autotrophic crenarchaeota. Such samples came from oligotrophic high mountain lakes and the hypolimnia of a sulfide-rich lake, where crenarchaeotal populations had been previously reported by 16S rRNA surveys. This study provided a fast tool to look for presence of accC genes in natural environments as potential marker for studies of carbon dioxide assimilation in the dark. After further refinement for better specificity against archaea, the new and novel primers could be very helpful to establish a target for crenarchaeota with implications for our understanding of archaeal carbon biogeochemistry.
|
|
|
Auguet, J. C., Nomokonova, N., Camarero, L., & Casamayor, E. O. (2011). Seasonal changes of freshwater ammonia-oxidizing archaeal assemblages and nitrogen species in oligotrophic alpine lakes. Appl Environ Microbiol, 77(6), 1937–1945.
Résumé: The annual changes in the composition and abundance of ammonia-oxidizing archaea (AOA) were analyzed monthly in surface waters of three high mountain lakes within the Limnological Observatory of the Pyrenees (LOOP; northeast Spain) using both 16S rRNA and functional (ammonia monooxygenase gene, amoA) gene sequencing as well as quantitative PCR amplification. The set of biological data was related to changes in nitrogen species and to other relevant environmental variables. The whole archaeal assemblage was dominated by phylotypes closely related to the crenarchaeal 1.1a group (58% +/- 18% of total 16S rRNA gene sequences), and consistent structural changes were detected during the study. Water temperature was the environmental variable that better explained spring, summer, and winter (ice-covered lakes) archaeal assemblage structure. The amoA gene was detected year round, and seasonal changes in amoA gene composition were well correlated with changes in the archaeal 16S rRNA gene pool. In addition, copy numbers of both the specific 1.1a group 16 rRNA and archaeal amoA genes were well correlated, suggesting that most freshwater 1.1a Crenarchaeota had the potential to carry out ammonia oxidation. Seasonal changes in the diversity and abundance of AOA (i.e., amoA) were better explained by temporal changes in ammonium, the substrate for nitrification, and mostly nitrite, the product of ammonia oxidation. Lacustrine amoA gene sequences grouped in coherent freshwater phylogenetic clusters, suggesting that freshwater habitats harbor typical amoA-containing ecotypes, which is different from soils and seas. We observed within the freshwater amoA gene sequence pool a high genetic divergence (translating to up to 32% amino acid divergence) between the spring and the remaining AOA assemblages. This suggests that different AOA ecotypes are adapted to different temporal ecological niches in these lakes.
|
|
|
Brauer, V. S., Stomp, M., Bouvier, T., Fouilland, E., Leboulanger, C., Confurius-Guns, V., et al. (2015). Competition and facilitation between the marine nitrogen-fixing cyanobacteriunn Cyanothece and its associated bacterial community. Frontiers in Microbiology, 5.
Résumé: N-2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N-2-fixing cyanobacterium Cyanothece sp. Miami BG043511 and its associated free-living chemotrophic bacteria at different concentrations of nitrate and dissolved organic carbon and different temperatures. High temperature strongly stimulated the growth of Cyanothece, but had less effect on the growth and community composition of the chemotrophic bacteria. Conversely, nitrate and carbon addition did not significantly increase the abundance of Cyanothece, but strongly affected the abundance and species composition of the associated chemotrophic bacteria. In nitrate-free medium the associated bacterial community was co-dominated by the putative diazotroph Mesorhizobium and the putative aerobic anoxygenic phototroph Erythrobacter and after addition of organic carbon also by the Flavobacterium Muricauda. Addition of nitrate shifted the composition toward co-dominance by Erythrobacter and the Gammaproteobacterium Marinobacter. Our results indicate that Cyanothece modified the species composition of its associated bacteria through a combination of competition and facilitation. Furthermore, within the bacterial community, niche differentiation appeared to play an important role, contributing to the coexistence of a variety of different functional groups. An important implication of these findings is that changes in nitrogen and carbon availability due to, e.g., eutrophication and climate change are likely to have a major impact on the species composition of the bacterial community associated with N-2-fixing cyanobacteria.
|
|