2019 |
Carvalho, P. G., et al. "Optimized fishing through periodically harvested closures." J. Appl. Ecol.. 56.8 (2019): 1927–1936.
Résumé: Periodically harvested closures are a widespread, centuries-old form of fisheries management that protects fish between pulse harvests and can generate high harvest efficiency by reducing fish wariness of fishing gear. However, the ability for periodic closures to also support high fisheries yields and healthy marine ecosystems is uncertain, despite increased promotion of periodic closures for managing fisheries and conserving ecosystems in the Indo-Pacific. We developed a bioeconomic fisheries model that considers changes in fish wariness, based on empirical field research, and quantified the extent to which periodic closures can simultaneously maximize harvest efficiency, fisheries yield and conservation of fish stocks. We found that periodic closures with a harvest schedule represented by closure for one to a few years between a single pulse harvest event can generate equivalent fisheries yield and stock abundance levels and greater harvest efficiency than achievable under conventional fisheries management with or without a permanent closure. Optimality of periodic closures at maximizing the triple objective of high harvest efficiency, high fisheries yield, and high stock abundance was robust to fish life history traits and to all but extreme levels of overfishing. With moderate overfishing, there emerged a trade-off between periodic closures that maximized harvest efficiency and no-take permanent closures that maximized yield; however, the gain in harvest efficiency outweighed the loss in yield for periodic closures when compared with permanent closures. Only with extreme overfishing, where fishing under nonspatial management would reduce the stock to <= 18% of its unfished level, was the harvest efficiency benefit too small for periodic closures to best meet the triple objective compared with permanent closures. Synthesis and applications. We show that periodically harvested closures can, in most cases, simultaneously maximize harvest efficiency, fisheries yield, and fish stock conservation beyond that achievable by no-take permanent closures or nonspatial management. Our results also provide design guidance, indicating that short closure periods between pulse harvest events are most appropriate for well-managed fisheries or areas with large periodic closures, whereas longer closure periods are more appropriate for small periodic closure areas and overfished systems.
|
|
2016 |
Ben-Gharbia, H., et al. "Toxicity and Growth Assessments of Three Thermophilic Benthic Dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima and Coolia monotis) Developing in the Southern Mediterranean Basin." Toxins. 8.10 (2016): 297.
Résumé: Harmful benthic dinoflagellates, usually developing in tropical areas, are expanding to temperate ecosystems facing water warming. Reports on harmful benthic species are particularly scarce in the Southern Mediterranean Sea. For the first time, three thermophilic benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima and Coolia monotis) were isolated from Bizerte Bay (Tunisia, Mediterranean) and monoclonal cultures established. The ribotyping confirmed the morphological identification of the three species. Maximum growth rates were 0.59 +/- 0.08 d(-1) for O. cf. ovata, 0.35 +/- 0.01 d(-1) for C. monotis and 0.33 +/- 0.04 d(-1) for P. lima. Toxin analyses revealed the presence of ovatoxin-a and ovatoxin-b in O. cf. ovata cells. Okadaic acid and dinophysistoxin-1 were detected in P. lima cultures. For C. monotis, a chromatographic peak at 5.6 min with a mass m/z = 1061.768 was observed, but did not correspond to a mono-sulfated analogue of the yessotoxin. A comparison of the toxicity and growth characteristics of these dinoflagellates, distributed worldwide, is proposed.
|
|
Zendong, Z., et al. "Passive Sampling and High Resolution Mass Spectrometry for Chemical Profiling of French Coastal Areas with a Focus on Marine Biotoxins." Environ. Sci. Technol.. 50.16 (2016): 8522–8529.
Résumé: Passive samplers (solid phase adsorption toxin tracking: SPATT) are able to accumulate biotoxins produced by microalgae directly from seawater, thus providing useful information for monitoring of the marine environment. SPATTs containing 0.3, 3, and 10 g of resin were deployed at four different coastal areas in France and analyzed using liquid chromatography coupled to high resolution mass spectrometry. Quantitative targeted screening provided in-sights into toxin profiles and showed that toxin concentrations and profiles in SPATTs were dependent on the amount of resin used. Between the three amounts of resin tested, SPATTs containing 3 g of resin appeared to be the best compromise, which is consistent with the use of 3 g of resin in SPATTs by previous studies. MassHunter and Mass Profiler Professional softwares were used for data reprocessing and statistical analyses. A differential profiling approach was developed to investigate and compare the overall chemical diversity of dissolved substances in different coastal water bodies. Principal component analysis (PCA) allowed for spatial differentiation between areas. Similarly, SPATTs retrieved from the same location at early, medium, and late deployment periods were also differentiated by PCA, reflecting seasonal variations in chemical profiles and in the microalgal community. This study used an untargeted metabolomic approach for spatial and temporal differentiation of marine environmental chemical profiles using SPATTs, and we propose this approach as a step forward in the discovery of chemical markers of short- or long-term changes in the microbial community structure.
|
|
2013 |
Rossi, F., et al. "Spatial distribution and nutritional requirements of the endosymbiont-bearing bivalve Loripes lacteus (sensu Poli, 1791) in a Mediterranean Nanozostera noltii (Hornemann) meadow." Journal of Experimental Marine Biology and Ecology. 440 (2013): 108–115.
Résumé: Sulphur-oxidising endosymbiont-bearing bivalves often inhabit seagrass meadows, where they can control sulphide levels and variably contribute to carbon cycling, by feeding on endosymbiotic bacteria and/or on particulate organic matter from the water column. The patterns of variability in their feeding mode and their spatial distribution within the seagrass meadows are however poorly studied. Seagrass beds form naturally patchy habitats with seagrass-sand edges that may have variable effects on different organisms. The present study aims at understanding differences in feeding mode and abundance of the endosymbiont-bearing bivalve Loripes lacteus (sensu Poli, 1791) as well as the physiological conditions of its endosymbiotic populations between edge and inner portion of meadows of the eelgrass Nanozostera noltii (Hornemann). In July 2010, Loripes specimens were sampled in 4 eelgrass patches at 2 different locations in the Thau lagoon, South of France. There was a clear negative edge effect on the abundance of small individuals of Loripes, while large individuals were homogeneously distributed between edge and inner part of the meadow. Although Loripes isotopic signatures (delta C-13 and delta N-15) were always closer to those of its symbiotic bacteria than to those of suspension-feeding bivalves, eelgrass edge enhanced mixotrophic behaviour of small animals, which assimilated less bacterial carbon and nitrogen at the edge than in the inner part of the eelgrass meadow. No differences related to eelgrass edges were instead found for the bacterial populations harboured by Loripes. Rather, flow cytometry revealed large variability at small spatial scales. Although bacteria were always important for the nutrition of Loripes, these findings showed that seagrass edges may contribute to regulate feeding mode and population structure of Loripes, which may have implications for seagrass functioning. (C) 2012 Elsevier B.V. All rights reserved.
|
|