Accueil | << 1 >> |
![]() |
Fournier, B., Mouquet, N., Leibold, M. A., & Gravel, D. (2017). An integrative framework of coexistence mechanisms in competitive metacommunities. Ecography, 40(5), 630–641.
Résumé: Species distribution in a metacommunity varies according to their traits, the distribution of environmental conditions and connectivity among localities. These ingredients contribute to coexistence across spatial scales via species sorting, patch dynamics, mass effects and neutral dynamics. These mechanisms however seldom act in isolation and the impact of landscape configuration on their relative importance remains poorly understood. We present a new model of metacommunity dynamics that simultaneously considers these four possible mechanisms over spatially explicit landscapes and propose a statistical approach to partition their contribution to species distribution. We find that landscape configuration can induce dispersal limitations that have negative consequences for local species richness. This result was more pronounced with neutral dynamics and mass effect than with species sorting or patch dynamics. We also find that the relative importance of the four mechanisms varies not only among landscape configurations, but also among species, with some species being mostly constrained by dispersal and/or drift and others by sorting. Changes in landscape properties might lead to a shift in coexistence mechanisms and, by extension, to a change in community composition. This confirms the importance of considering landscape properties for conservation and management. Our results illustrate the idea that ecological communities are the results of multiple mechanisms acting at the same time and complete our understanding of spatial processes in competitive metacommunities.
|
Massol, F., Altermatt, F., Gounand, I., Gravel, D., Leibold, M. A., & Mouquet, N. (2017). How life-history traits affect ecosystem properties: effects of dispersal in meta-ecosystems. Oikos, 126(4), 532–546.
Résumé: The concept of life-history traits and the study of these traits are the hallmark of population biology. Acknowledging their variability and evolution has allowed us to understand how species adapt in response to their environment. The same traits are also involved in how species alter ecosystems and shape their dynamics and functioning. Some theories, such as the metabolic theory of ecology, ecological stoichiometry or pace-of-life theory, already recognize this junction, but only do so in an implicitly non-spatial context. Meanwhile, for a decade now, it has been argued that ecosystem properties have to be understood at a larger scale using meta-ecosystem theory because source-sink dynamics, community assembly and ecosystem stability are all modified by spatial structure. Here, we argue that some ecosystem properties can be linked to a single life-history trait, dispersal, i.e. the tendency of organisms to live, compete and reproduce away from their birth place. By articulating recent theoretical and empirical studies linking ecosystem functioning and dynamics to species dispersal, we aim to highlight both the known connections between life-history traits and ecosystem properties and the unknown areas, which deserve further empirical and theoretical developments.
|