Espinosa, F., & Rivera-Ingraham, G. A. (2016). Subcellular evidences of redox imbalance in well-established populations of an endangered limpet. Reasons for alarm? Mar. Pollut. Bull., 109(1), 72–80.
Résumé: Intertidal species are more vulnerable to anthropogenic disturbances than others inhabiting subtidal and offshore habitats. Coastal development frequently results in trace-metal pollution. For endangered species such as Patella ferruginea it can be a high risk that leads local populations to extinction. Three localities were surveyed, one within a natural and unpolluted area and the other two within the harbor of Ceuta (Strait of Gibraltar), on breakwaters outside and inside. The specimens collected inside the harbor reached 3-fold higher Hg content than for those incoming from the natural area. PERMANOVA test indicated that metal composition of the specimens from inside the harbor was different from the rest. In addition, evidence of cell damage was detected in the specimens from the harbor area. This highlights the urgency of undertaking a physiological evaluation of some of the most vulnerable populations, establishing eco-physiological protocols for monitoring and managing populations settled on artificial substrata. (C) 2016 Elsevier Ltd. All rights reserved.
|
Rossi, F., Colao, E., Martinez, M. J., Klein, J. C., Carcaillet, F., Callier, M. D., et al. (2013). Spatial distribution and nutritional requirements of the endosymbiont-bearing bivalve Loripes lacteus (sensu Poli, 1791) in a Mediterranean Nanozostera noltii (Hornemann) meadow. Journal of Experimental Marine Biology and Ecology, 440, 108–115.
Résumé: Sulphur-oxidising endosymbiont-bearing bivalves often inhabit seagrass meadows, where they can control sulphide levels and variably contribute to carbon cycling, by feeding on endosymbiotic bacteria and/or on particulate organic matter from the water column. The patterns of variability in their feeding mode and their spatial distribution within the seagrass meadows are however poorly studied. Seagrass beds form naturally patchy habitats with seagrass-sand edges that may have variable effects on different organisms. The present study aims at understanding differences in feeding mode and abundance of the endosymbiont-bearing bivalve Loripes lacteus (sensu Poli, 1791) as well as the physiological conditions of its endosymbiotic populations between edge and inner portion of meadows of the eelgrass Nanozostera noltii (Hornemann). In July 2010, Loripes specimens were sampled in 4 eelgrass patches at 2 different locations in the Thau lagoon, South of France. There was a clear negative edge effect on the abundance of small individuals of Loripes, while large individuals were homogeneously distributed between edge and inner part of the meadow. Although Loripes isotopic signatures (delta C-13 and delta N-15) were always closer to those of its symbiotic bacteria than to those of suspension-feeding bivalves, eelgrass edge enhanced mixotrophic behaviour of small animals, which assimilated less bacterial carbon and nitrogen at the edge than in the inner part of the eelgrass meadow. No differences related to eelgrass edges were instead found for the bacterial populations harboured by Loripes. Rather, flow cytometry revealed large variability at small spatial scales. Although bacteria were always important for the nutrition of Loripes, these findings showed that seagrass edges may contribute to regulate feeding mode and population structure of Loripes, which may have implications for seagrass functioning. (C) 2012 Elsevier B.V. All rights reserved.
|