Accueil | << 1 2 3 4 5 >> |
![]() |
Yemane, D., Shin, Y. - J., & Field, J. G. (2009). Exploring the effect of Marine Protected Areas on the dynamics of fish communities in the southern Benguela : an individual-based modelling approach. Ices Journal of Marine Science, 66(2), 378–387.
Résumé: Marine Protected Areas (MPAs) have been suggested as a tool that can achieve some of the goals of an Ecosystem Approach to Fisheries (EAF), e.g. prevention of overexploitation, biodiversity conservation, recovery of overexploited population, but the consequences of their establishment on the dynamics of protected components are often unclear. Spatial and multispecies models can be used to investigate the effects of their introduction. An individual-based, spatially explicit, size-structured, multispecies model (known as OSMOSE) is used to investigate the likely consequences of the introduction of three MPAs off the coast of South Africa, individually or in combination. The simultaneous introduction of the MPAs affected varying proportions of the distribution of the modelled species (5-17%) and 12% of the distribution of the whole community. In general, the introduction of the MPAs in the different scenarios resulted in a relative increase in the biomass of large predatory fish and a decrease in the biomass of small pelagic fish. The simulation demonstrates that consideration of trophic interactions is necessary when introducing MPAs, with indirect effects that may be detrimental to some (mainly smaller prey) species.
|
Sheehan, E. V., Vaz, S., Pettifer, E., Foster, N. L., Nancollas, S. J., Cousens, S., et al. (2016). An experimental comparison of three towed underwater video systems using species metrics, benthic impact and performance. Methods Ecol. Evol., 7(7), 843–852.
Résumé: Managing ecological systems, which operate over large spatial scales, is inherently difficult and often requires sourcing data from different countries and organizations. The assumption might be made that data collected using similar methodologies are comparable, but this is rarely tested. Here, benthic video data recorded using different towed underwater video systems (TUVSs) were experimentally compared. Three technically different TUVSs were compared on different seabed types (rocky, mixed ground and sandy) in Kingmere Marine Conservation Zone, off the south coast of England. For each TUVS, species metrics (forward facing camera), seabed impact (backward facing camera) and operational performance (strengths and limitations of equipment and video footage) were compared with the aim of providing recommendations on their future use and comparability of data between different systems. Statistically significant differences between species richness, density, cover and assemblage composition were detected amongst devices and were believed to be mostly due to their optical specifications. As a result of their high image definition and large field of vision both the benthic contacting heavy and benthic tending TUVS provided good quality footage and ecological measurements. However, the heaviest TUVS proved difficult to operate on irregular ground and was found to cause the most impact to the seabed. The lightest TUVS (benthic contacting light) struggled to maintain contact with the seabed. The benthic tending TUVS was able to fly over variable seabed relief and was comparably the least destructive. Results from this study highlight that particular care should be given to sled and optic specifications when developing a medium- or long-term marine protected area monitoring programme. Furthermore, when using data gathered from multiple sources to test ecological questions, different equipment specifications may confound observed ecological differences. A benthic tending TUVS is recommended for benthic surveys over variable habitat types, particularly in sensitive areas, such as marine protected areas.
|
Roberts, C. M., O’Leary, B. C., McCauley, D. J., Cury, P. M., Duarte, C. M., Lubchenco, J., et al. (2017). Marine reserves can mitigate and promote adaptation to climate change. Pnas, 114(24), 6167–6175.
Résumé: Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change by promoting carbon sequestration and storage and by buffering against uncertainty in management, environmental fluctuations, directional change, and extreme events. We highlight both strengths and limitations and conclude that marine reserves are a viable low-tech, cost-effective adaptation strategy that would yield multiple cobenefits from local to global scales, improving the outlook for the environment and people into the future.
|
Marsac, F., Galletti, F., Ternon, J. - F., Romanov, E. V., Demarcq, H., Corbari, L., et al. (2020). Seamounts, plateaus and governance issues in the southwestern Indian Ocean, with emphasis on fisheries management and marine conservation, using the Walters Shoal as a case study for implementing a protection framework. Deep Sea Research Part II: Topical Studies in Oceanography, 176, 104715.
Résumé: There is a growing interest in the management of seamounts of the Southwestern Indian Ocean (SWIO) both in waters under national jurisdictions and in the Areas Beyond National Jurisdiction (ABNJ). New scientific knowledge has been gathered through various oceanographic cruises during the past decade, and new agreements are under consideration globally to promote conservation and sustainable use of the biodiversity in the ABNJ, where the deep sea ecosystems associated with seamounts are a growing matter of concern. SWIO seamounts have attracted the interests of fishers since the 1960s, and contracts for mining exploration have been granted recently. Seamounts are known to shelter rich, fragile and poorly resilient ecosystems whose important ecological functions are threatened by various anthropogenic pressures. Whereas many seamounts and shoals are located in national waters, many others fall in the ABNJ, with no current legal status per se. To ensure conservation of their habitats and biodiversity, it is essential that protection measures are instigated under an internationally recognized legal and institutional framework. In this paper, we review the current state of such a framework relevant to seamounts, with emphasis on fisheries and conservation in the SWIO. An emblematic seamount, the Walters Shoal, is selected as a case study to discuss how it could become a fully-protected space in the ABNJ. As a large part of the SWIO is under the mandate of the Nairobi Convention (as a Regional Sea under the auspices of UNEP), guidelines are proposed to encourage dedicated seamount governance within the framework of this Convention.
|
Marinesque, S., Kaplan, D., & Rodwell, L. D. (2012). Global implementation of marine protected areas : is the developing world being left behind ? Marine Policy, 36(3), 727–737.
Résumé: While the global network of marine protected areas (MPAs) has recently been evaluated in the light of bio-geographic targets, there has been no attempt to evaluate the relative conservation efforts made by the different nations with regards to their level of socio-economic development. Using information mostly gathered from the world database on protected areas (WDPA), this paper gives a comparative assessment of MPA progress in countries from different economic categories, ranging from advanced economies to least developed countries (LDCs). Potentially explanatory socio-economic and environmental factors, such as fishing activity and existence of vulnerable marine ecosystems, for variability between nations in the level of MPA implementation are also explored. Existing MPA databases demonstrate a clear gap between developed and developing nations in MPA establishment, with advanced economies accounting for two thirds of the global MPA network. Patterns of MPA use, however, remain extremely heterogeneous between countries within each development group. International agreements on marine conservation, above and beyond the influence of country socioeconomic and environmental profiles, are identified as a stimulating factor to MPA implementation. The level dependence on marine resource extraction appears to impede MPA implementation, though the relationship is not statistically significant due to large heterogeneity among countries. Leading developed nations increasingly use MPAs to designate integrated and adaptive management areas, and implementation of large “no-take” reserves in relatively-pristine overseas areas continues to accelerate. These analyses highlight certain limitations regarding our ability to assess the true conservation effectiveness of the existing global MPA network and the need for improved indicators of MPA restrictions and management efforts.
|