Annasawmy, P., Ternon, J. F., Marsac, F., Cherel, Y., Behagle, N., Roudaut, G., et al. (2018). Micronekton diel migration, community composition and trophic position within two biogeochemical provinces of the South West Indian Ocean: Insight from acoustics and stable isotopes. Deep-Sea Res. Part I-Oceanogr. Res. Pap., 138, 85–97.
Résumé: Spatial distribution, community composition and trophic roles of micronekton (crustaceans, fishes and squids) were investigated in the Indian South Subtropical Gyre (ISSG) province and the East African Coastal province (EAFR), by combining acoustic surveys, mid-water trawls and stable isotope analyses from scientific cruises conducted in 2009 and 2010. Mesopelagic micronekton performed diel vertical migrations in both provinces, from deep (400-740 m) to surface (0-200 m) layers at dusk and in the opposite direction at dawn, with some species migrating below 740 m. The EAFR province was more dynamic than the oligotrophic ISSG province, with enhanced eddy activity and enhanced yearly productivity. The active enrichment mechanisms in the EAFR, in terms of available primary production, led to high micronekton acoustic density (as a proxy of micronekton abundance) and large micronekton weight and abundance estimates from trawl data. Particulate organic matter in the EAFR exhibited greater enrichment in C-13 and N-15 compared to the ISSG and, consequently, tissues of selected micronekton organisms in the EAFR were more enriched in N-15 (higher delta N-15 values). In both provinces, micronekton encompassed a wide range of isotopic niches, with large overlaps between species. Micronekton and swordfish in the EAFR had an overlapping range of delta N-15 values, contrasting with the ISSG province where swordfish were two trophic levels higher than the sampled micronekton. Our results provide some evidence that the combined action of riverine input and the dynamics of eddies might influence productivity in the EAFR, and hence the abundance of micronekton and the enrichment of tissues in N-15, compared to the oligotrophic ISSG province.
|
Olson, R. J., Young, J. W., Menard, F., Potier, M., Allain, V., Goni, N., et al. (2016). Bioenergetics, Trophic Ecology, and Niche Separation of Tunas. In B. E. Curry (Ed.), (pp. 199–344). Advances in Marine Biology, Vol 74, 74. San Diego: Elsevier Academic Press Inc.
Résumé: Tunas are highly specialized predators that have evolved numerous adaptations for a lifestyle that requires large amounts of energy consumption. Here we review our understanding of the bioenergetics and feeding dynamics of tunas on a global scale, with an emphasis on yellowfin, bigeye, skipjack, albacore, and Atlantic bluefin tunas. Food consumption balances bioenergetics expenditures for respiration, growth (including gonad production), specific dynamic action, egestion, and excretion. Tunas feed across the micronekton and some large zooplankton. Some tunas appear to time their life history to take advantage of ephemeral aggregations of crustacean, fish, and molluscan prey. Ontogenetic and spatial diet differences are substantial, and significant interdecadal changes in prey composition have been observed. Diet shifts from larger to smaller prey taxa highlight ecosystem-wide changes in prey availability and diversity and provide implications for changing bioenergetics requirements into the future. Where tunas overlap, we show evidence of niche separation between them; resources are divided largely by differences in diet percentages and size ranges of prey taxa. The lack of long-term data limits the ability to predict impacts of climate change on tuna feeding behaviour. We note the need for systematic collection of feeding data as part of routine monitoring of these species, and we highlight the advantages of using biochemical techniques for broad-scale analyses of trophic relations. We support the continued development of ecosystem models, which all too often lack the regional-specific trophic data needed to adequately investigate climate and fishing impacts.
|