Abadie, E., Chiantella, C., Crottier, A., Rhodes, L., Masseret, E., Berteaux, T., et al. (2018). What are the main environmental factors driving the development of the neurotoxic dinoflagellate Vulcanodinium rugosum in a Mediterranean ecosystem (Ingril lagoon, France)? Harmful Algae, 75, 75–86.
Résumé: Vulcanodinium rugosum, a dinoflagellate developing in Ingril Lagoon (Mediterranean, France) is responsible for shellfish intoxications due to the neurotoxin pinnatoxin G. A one year survey (March 2012–April 2013) was conducted in this oligotrophic shallow lagoon and key environmental parameters were recorded (temperature, salinity and nutrients). The spatio-temporal distribution of V. rugosum in water column and on macrophytes was also determined. Planktonic cells of V. rugosum were observed at all sampling stations, but in relatively low concentrations (maximum of 1000 cell/L). The highest abundances were observed from June to September 2012. There was a positive correlation between cell densities and both temperature and salinity. Non-motile cells were detected on macrophytes, with a maximum concentration of 6300 cells/g wet weight. Nitrite and ammonium were negatively related to V. rugosum abundance whereas total nitrogen, total phosphorus and phosphates showed a positive correlation. Altogether, in situ results suggest that V. rugosum is rather thermophilic and that organic nutrients should be considered when studying the nutrition requirements for this noxious expanding dinoflagellate.
|
Abadie, E., Muguet, A., Berteaux, T., Chomérat, N., Hess, P., ROQUE D'ORBCASTEL, E., et al. (2016). Toxin and Growth Responses of the Neurotoxic Dinoflagellate Vulcanodinium rugosum to Varying Temperature and Salinity. Toxins, 8(5), 136.
Résumé: Vulcanodinium rugosum, a recently described species, produces pinnatoxins. The IFR-VRU-01 strain, isolated from a French Mediterranean lagoon in 2010 and identified as the causative dinoflagellate contaminating mussels in the Ingril Lagoon (French Mediterranean) with pinnatoxin-G, was grown in an enriched natural seawater medium. We tested the effect of temperature and salinity on growth, pinnatoxin-G production and chlorophyll a levels of this dinoflagellate. These factors were tested in combinations of five temperatures (15, 20, 25, 30 and 35 °C) and five salinities (20, 25, 30, 35 and 40) at an irradiance of 100 µmol photon m−2 s−1. V. rugosum can grow at temperatures and salinities ranging from 20 °C to 30 °C and 20 to 40, respectively. The optimal combination for growth (0.39 ± 0.11 d−1) was a temperature of 25 °C and a salinity of 40. Results suggest that V. rugosum is euryhaline and thermophile which could explain why this dinoflagellate develops in situ only from June to September. V. rugosum growth rate and pinnatoxin-G production were highest at temperatures ranging between 25 and 30 °C. This suggests that the dinoflagellate may give rise to extensive blooms in the coming decades caused by the climate change-related increases in temperature expected in the Mediterranean coasts.
|
BAUER, R., Graewe, U., Stepputtis, D., Zimmermann, C., & Hammer, C. (2014). Identifying the location and importance of spawning sites of Western Baltic herring using a particle backtracking model. Ices Journal Of Marine Science, 71(3), 499–509.
Résumé: The recruitment success of some herring stocks fluctuates strongly, and apparently, success is often already determined during the early life stages, i.e. before metamorphosis. In studying the survival of early life stages and its affecting factors, particularly those during the egg stage, it is crucial to examine the processes at the spawning sites, which often cannot be explored directly. A recent decline in the recruitment of Western Baltic spring-spawning herring (WBSSH) increases the urgency of filling the knowledge gap for this stock, especially because one bottleneck in the recruitment seems to occur before hatching. We examined the successful 20032009 spawning sites of WBSSH in the main spawning ground, the Greifswalder Bodden lagoon. Instead of using common techniques such as diving or underwater videography, which are usually unsuitable for mapping large areas, we applied a model approach. We tracked herring larvae at length 610 mm, recorded by larval surveys during MarchJune of the respective years, back to their hatching sites using a Lagrangian particle backtracking model. We compared the spawning areas identified by the model with the results of earlier field studies; however, we also analysed variations between years, larval length groups, and different applied growth models, which are needed to define hatch-dates. Although spawning sites could not be identified with high precision because of the strong diffusion in the area studied, results indicate that larvae up to 10 mm length are caught near their hatching sites. However, the location of successful spawning sites varied largely between years, with the main hatching sites situated in the Strelasund and the eastern entrance of the lagoon. This may reflect variations in spawning-site selection or quality. A better knowledge of the locations and relative importance of, and the processes occurring on, the different spawning sites will provide an important contribution to the sustainable management of this commercially valuable herring stock.
|
Ben Gharbia, H., Yahia, O. K. - D., Cecchi, P., Masseret, E., Amzil, Z., Herve, F., et al. (2017). New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates. Plos One, 12(11), e0187963.
Résumé: Macrophytes are known to release allelochemicals that have the ability to inhibit the proliferation of their competitors. Here, we investigated the effects of the fresh leaves of two magnoliophytes (Zostera noltei and Cymodocea nodosa) and thalli of the macroalgae Ulva rigida on three HAB-forming benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima, and Coolia monotis). The effects of C. nodosa and U. rigida were also tested against the neurotoxic planktonic dinoflagellate Alexandrium pacificum Litaker sp. nov (former Alexandrium catenella). Co-culture experiments were conducted under controlled laboratory conditions and potential allelopathic effects of the macrophytes on the growth, photosynthesis and toxin production of the targeted dinoflagellates were evaluated. Results showed that U. rigida had the strongest algicidal effect and that the planktonic A. pacificum was the most vulnerable species. Benthic dinoflagellates seemed more tolerant to potential allelochemicals produced by macrophytes. Depending on the dinoflagellate/macrophyte pairs and the weight of leaves/thalli tested, the studied physiological processes were moderately to heavily altered. Our results suggest that the allelopathic activity of the macrophytes could influence the development of HAB species.
|
Ben Othman, H., Lanouguère, É., Got, P., Sakka Hlaili, A., & Leboulanger, C. (2018). Structural and functional responses of coastal marine phytoplankton communities to PAH mixtures. Chemosphere, 209, 908–919.
Résumé: The toxicity of polycyclic aromatic hydrocarbons (PAHs) mixtures was evaluated on natural phytoplankton communities sampled from lagoons of Bizerte (South-western Mediterranean Sea) and Thau (North-western Mediterranean Sea). PAHs induced short-term dose and ecosystem-dependant decreases in photosynthetic potential. Chlorophyll a was negatively affected by increasing PAHs concentrations, together with dramatic changes in phytoplankton community composition. Size classes were strongly affected in the Bizerte compare to the Thau lagoon, with a decrease in nano- and microphytoplankton densities compare to picophytoplankton. In both locations, the diatom Entomoneis paludosa appeared favoured under PAH exposure as evidenced by increase in cell density, whereas autotrophic flagellates and dinophytes were strongly reduced. Smaller cells were more tolerant to exposure to highest PAHs concentrations, with persistent picophytoplankton carbon biomass at the end of the incubations. Apparent recovery of photosynthetic potential, accompanied with a regrowth of chlorophyll a under the lowest PAH doses, coincided with a significantly altered community composition in both lagoons. Furthermore, sensitivity to PAHs was not related to the phytoplankton cell size, and toxicity-induced modification of top-down control by grazers during the experiment cannot be excluded.
|