Batsleer, J., Marchal, P., Vaz, S., Vermard, V., Rijnsdorp, A. D., & Poos, J. J. (2018). Exploring habitat credits to manage the benthic impact in a mixed fishery. Mar. Ecol.-Prog. Ser., 586, 167–179.
Résumé: The performance of a combined catch quota and habitat credit system was explored to manage the sustainable exploitation of a mix of demersal fish species and reduce the benthic impacts of bottom trawl fisheries using a dynamic state variable model approach. The model was parameterised for the Eastern English Channel demersal mixed fishery using otter trawls or dredges. Target species differed in their association with habitat types. Restricting catch quota for plaice and cod had a limited effect on benthic impact, except when reduced to very low values, forcing the vessels to stay in port. Quota management had a minimal influence on fishing behaviour and hence resulted in a minimal reduction of benthic impact. Habitat credits may reduce the benthic impacts of the trawl fisheries at a minimal loss of landings and revenue, as vessels are still able to reallocate their effort to less vulnerable fishing grounds, while allowing the fishery to catch their catch quota and maintain their revenue. Only if they are reduced to extremely low levels can habitat credits potentially constrain fishing activities to levels that prevent the fisheries from using up the catch quota for the target species.
|
Benhaim, D., Ferrari, S., Colchen, T., Chatain, B., & Begout, M. - L. (2017). Relationship between individual and group learning in a marine teleost: A case study with sea bass under self-feeding conditions. Learn Behav., 45(3), 276–286.
Résumé: Fish learning and cognition are usually approached by testing single individuals in various devices such as mazes that have serious drawbacks, especially in gregarious species, including the stress induced by the test procedure. This might impair the results and lead to misinterpretation about the learning abilities of the targeted species. In order to provide an alternative to the individual-based tests, we investigated for the first time the operant conditioning of four similar groups (50 individuals per tank) of sea bass. We used two computerized self-feeder devices per tank, each coupled with individual electronic identification and that were alternately activated during varying positive appetitive reinforcement period of time (7 to 1 day). Learning abilities were examined at both group and individual levels. At the group level, the operant conditioning was demonstrated as the triggering activity significantly decreased when the device was turned off and increased when it was turned on, whatever the reinforcement period duration. The individual level analysis revealed a more complex situation with fish showing different learning performances that can be best explained through the producer-scrounger game theory.
|
Bonola, M., Girondot, M., Robin, J. - P., Martin, J., Siegwalt, F., Jeantet, L., et al. (2019). Fine scale geographic residence and annual primary production drive body condition of wild immature green turtles (Chelonia mydas) in Martinique Island (Lesser Antilles). Biol. Open, 8(12), bio048058.
Résumé: The change of animal biometrics (body mass and body size) can reveal important information about their living environment as well as determine the survival potential and reproductive success of individuals and thus the persistence of populations. However, weighing individuals like marine turtles in the field presents important logistical difficulties. In this context, estimating body mass (BM) based on body size is a crucial issue. Furthermore, the determinants of the variability of the parameters for this relationship can provide information about the quality of the environment and the manner in which individuals exploit the available resources. This is of particular importance in young individuals where growth quality might be a determinant of adult fitness. Our study aimed to validate the use of different body measurements to estimate BM, which can be difficult to obtain in the field, and explore the determinants of the relationship between BM and size in juvenile green turtles. Juvenile green turtles were caught, measured, and weighed over 6 years (2011 2012; 2015 2018) at six bays to the west of Martinique Island (Lesser Antilles). Using different datasets from this global database, we were able to show that the BM of individuals can be predicted from body measurements with an error of less than 2%. We built several datasets including different morphological and time-location information to test the accuracy of the mass prediction. We show a yearly and north – south pattern for the relationship between BM and body measurements. The year effect for the relationship of BM and size is strongly correlated with net primary production but not with sea surface temperature or cyclonic events. We also found that if the bay locations and year effects were removed from the analysis, the mass prediction degraded slightly but was still less than 3% on average. Further investigations of the feeding habitats in Martinique turtles are still needed to better understand these effects and to link them with geographic and oceanographic conditions.
|
Cox, S. L., Authier, M., Orgeret, F., Weimerskirch, H., & Guinet, C. (2020). High mortality rates in a juvenile free-ranging marine predator and links to dive and forage ability. Ecol. Evol., 10(1), 410–430.
Résumé: High juvenile mortality rates are typical of many long-lived marine vertebrate predators. Insufficient development in dive and forage ability is considered a key driver of this. However, direct links to survival outcome are sparse, particularly in free-ranging marine animals that may not return to land. In this study, we conduct exploratory investigations toward early mortality in juvenile southern elephant seals Mirounga leonina. Twenty postweaning pups were equipped with (a) a new-generation satellite relay data tag, capable of remotely transmitting fine-scale behavioral movements from accelerometers, and (b) a location transmitting only tag (so that mortality events could be distinguished from device failures). Individuals were followed during their first trip at sea (until mortality or return to land). Two analyses were conducted. First, the behavioral movements and encountered environmental conditions of nonsurviving pups were individually compared to temporally concurrent observations from grouped survivors. Second, common causes of mortality were investigated using Cox's proportional hazard regression and penalized shrinkage techniques. Nine individuals died (two females and seven males) and 11 survived (eight females and three males). All but one individual died before the return phase of their first trip at sea, and all but one were negatively buoyant. Causes of death were variable, although common factors included increased horizontal travel speeds and distances, decreased development in dive and forage ability, and habitat type visited (lower sea surface temperatures and decreased total [eddy] kinetic energy). For long-lived marine vertebrate predators, such as the southern elephant seal, the first few months of life following independence represent a critical period, when small deviations in behavior from the norm appear sufficient to increase mortality risk. Survival rates may subsequently be particularly vulnerable to changes in climate and environment, which will have concomitant consequences on the demography and dynamics of populations.
|
Freon, P., Coetzee, J. C., Lingen, C. D. V. der, Connell, A. D., O'Donoghue, S. H., Roberts, M. J., et al. (2010). A review and tests of hypotheses about causes of the KwaZulu-Natal sardine run. African Journal of Marine Science, 32(2), 449–479.
|