2018 |
Chary, K., et al. "Cultivating biomass locally or importing it? LCA of biomass provision scenarios for cleaner electricity production in a small tropical island." Biomass Bioenerg.. 110 (2018): 1–12.
Résumé: Biomass is a promising renewable alternative to decarbonize and to secure energy production on small islands, as most insular power generation systems rely heavily on imported fossil fuels. Feedstock procurement is a key aspect of bioenergy chain sustainability, and local resources as well as imported biomass can be considered if the electricity generated presents environmental benefits. We used Life Cycle Assessment (LCA) to evaluate the environmental impacts of 1 kWh of electricity produced in Guadeloupe from the combustion of locally grown energy cane and imported wood pellets. The energy cane agricultural supply was simulated using a bio-economic model to elaborate and analyze five scenarios involving different biomass mixes and geographical areas of production. Our results show that electricity produced from energy cane reduced the impacts of ABIOTIC DEPLETION, ACIDIFICATION and PHOTOCHEMICAL OXIDATION by 29% compared with pellet-based electricity. The environmental impacts of the energy cane cultivation stage varied by a factor of 1.5-3.7 among regional areas of cultivation because of differences in yields, soil emissions and land conversion for energy crop farming. The substitution of 5% of fossil energy by biomass in the island electricity mix can reduce GLOBAL WARMING and ABIOTIC DEPLETION impact by 4.5%. However, this change requires 3.5 to 5.2 times higher LAND OCCUPATION per unit of energy produced. Given the limited land availability on small islands, this latter point confirms that the combination of locally grown energy crops with imported biomass will be a suitable strategy to develop sustainable bioenergy for small islands.
|
|
de Almeida Alves-Júnior, F., et al. "New records of deep-sea prawn of the genus Gennadas Spence Bate, 1881 (Crustacea: Decapoda: Benthesicymidae) from Southwestern Atlantic." Zootaxa. 4450.3 (2018): 376–384.
Résumé: Here, we report the new occurrences of four deep-water prawn of the genus Gennadas in the southwestern Atlantic: G. gilchristi recorded from the Mid-Atlantic Ridge region; G. capensis recorded from Brazilian waters off Fernando de Noronha Archipelago, Atol das Rocas and Ceará Chain; G. talismani and G. scutatus recorded both to Mid-Atlantic Ridge and to Brazilian waters.
|
|
Perry, C. T., et al. "Loss of coral reef growth capacity to track future increases in sea level." Nature. 558.7710 (2018): 396–+.
Résumé: Sea-level rise (SLR) is predicted to elevate water depths above coral reefs and to increase coastal wave exposure as ecological degradation limits vertical reef growth, but projections lack data on interactions between local rates of reef growth and sea level rise. Here we calculate the vertical growth potential of more than 200 tropical western Atlantic and Indian Ocean reefs, and compare these against recent and projected rates of SLR under different Representative Concentration Pathway (RCP) scenarios. Although many reefs retain accretion rates close to recent SLR trends, few will have the capacity to track SLR projections under RCP4.5 scenarios without sustained ecological recovery, and under RCP8.5 scenarios most reefs are predicted to experience mean water depth increases of more than 0.5 m by 2100. Coral cover strongly predicts reef capacity to track SLR, but threshold cover levels that will be necessary to prevent submergence are well above those observed on most reefs. Urgent action is thus needed to mitigate climate, sea-level and future ecological changes in order to limit the magnitude of future reef submergence.
|
|
Toussaint, A., et al. "Non-native species led to marked shifts in functional diversity of the world freshwater fish faunas." Ecol. Lett.. 21.11 (2018): 1649–1659.
Résumé: Global spread of non-native species profoundly changed the world biodiversity patterns, but how it translates into functional changes remains unanswered at the world scale. We here show that while in two centuries the number of fish species per river increased on average by 15% in 1569 basins worldwide, the diversity of their functional attributes (i.e. functional richness) increased on average by 150%. The inflation of functional richness was paired with changes in the functional structure of assemblages, with shifts of species position toward the border of the functional space of assemblages (i.e. increased functional divergence). Non-native species moreover caused shifts in functional identity toward higher body sized and less elongated species for most of assemblages throughout the world. Although varying between rivers and biogeographic realms, such changes in the different facets of functional diversity might still increase in the future through increasing species invasion and may further modify ecosystem functioning.
|
|
Zubia, M., et al. "Diversity and assemblage structure of tropical marine flora on lava flows of different ages." Aquat. Bot.. 144 (2018): 20–30.
Résumé: Recent volcanic lava flows extending into the ocean represent an ideal opportunity to study the long-term successional development of marine floral assemblages on the bare new substratum. We describe the floral assemblages of nine lava flows of different ages (prehistoric to 2007) at Piton de la Fournaise (Reunion Island, Indian Ocean) based on a survey of 37 stations. We identified 159 species including 148 macroalgae, 1 seagrass, and 10 cyanobacteria. Fifty-one of those represent new records for Reunion Island, and at least 9 taxa were identified as new to science. Recent lava flows were characterized by the dominance of ephemeral, opportunistic species, such as Pseudobryopsis hainanensis and Acrocladus dotyanus, while prehistoric lava flows were mainly characterized by perennial species, particularly Sargassum portiericuzum and Turbinaria ornata. A canonical correspondence analysis revealed that the environmental factor that most significantly correlated to the variation in floral assemblages was the distance to the most recent lava flow (2007). This factor was also highly correlated to coral cover. The composition of the different floral assemblages is discussed in relation to abiotic and biotic factors to explain ecological succession in a tropical environment.
|
|
2017 |
Bender, M. G., et al. "Isolation drives taxonomic and functional nestedness in tropical reef fish faunas." Ecography. 40.3 (2017): 425–435.
Résumé: Taxonomic nestedness, the degree to which the taxonomic composition of species-poor assemblages represents a subset of richer sites, commonly occurs in habitat fragments and islands differing in size and isolation from a source pool. However, species are not ecologically equivalent and the extent to which nestedness is observed in terms of functional trait composition of assemblages still remains poorly known. Here, using an extensive database on the functional traits and the distributions of 6316 tropical reef fish species across 169 sites, we assessed the levels of taxonomical vs functional nestedness of reef fish assemblages at the global scale. Functional nestedness was considerably more common than taxonomic nestedness, and generally associated with geographical isolation, where nested subsets are gradually more isolated from surrounding reef areas and from the center of biodiversity. Because a nested pattern in functional composition implies that certain combinations of traits may be represented by few species, we identified these groups of low redundancy that include large herbivore-detritivores and omnivores, small piscivores, and macro-algal herbivores. The identified patterns of nestedness may be an outcome of the interaction between species dispersal capabilities, resource requirements, and gradients of isolation among habitats. The importance of isolation in generating the observed pattern of functional nestedness within biogeographic regions may indicate that disturbance in depauperate and isolated sites can have disproportionate effects on the functional structure of their reef fish assemblages.
|
|
Guyader, O., B. Robert, and R. Lionel. "Assessing the number of moored fishing aggregating devices through aerial surveys: A case study from Guadeloupe." Fish Res.. 185 (2017): 73–82.
Résumé: Moored fish aggregating devices (MFADs) are increasingly being used in small-scale tropical fisheries to access pelagic fish species that are otherwise difficult to harvest in large numbers. Little attention has yet been paid to monitoring MFADs in coastal areas, however. This is most likely due to the small-scale nature of most fisheries that utilize them and the presumed lower impact of those fisheries on fish stocks and their ecosystems. In this paper, we examined the abundance and density of MFADs around Guadeloupe, using aerial line transect surveys. Estimated MFAD densities were found to be high compared with previously reported densities in this area, especially within the 22-45 km range offshore. We examine and discuss possible reasons for these high densities. The main drivers appear to be the target species dolphinfish (Coryphaena hippurus) and yellowfin tuna (Thunnus albacares) and related fishing behaviour. We present different approaches for reducing and monitoring MFADs densities, including the co-management of MFAD territorial use rights by fishing communities. (C) 2016 Elsevier B.V. All rights reserved.
|
|
2016 |
Bouvy, M., et al. "Plankton communities in the five Iles Eparses (Western Indian Ocean) considered to be pristine ecosystems." Acta Oecologica (2016): 9–20.
Résumé: Coral reef environments are generally recognized as being the most threatened of marine ecosystems. However, it is extremely difficult to distinguish the effects of climate change from other forcing factors, mainly because it is difficult to study ecosystems that are isolated from human pressure. The five Iles Eparses (Scattered Islands) are located in the Western Indian Ocean (WIO) and can be considered to be “pristine” ecosystems not subject to anthropogenic pressure. This study characterized their plankton assemblages for the first time, by determining the abundances of microbial (virus, bacteria, heterotrophic protists and phytoplankton) and metazooplankton communities in various lagoon and ocean sites around each island. The Europa lagoon has extensive, productive mangrove forests, which have the highest nutrient concentrations (nitrogen forms, dissolved organic carbon) and whose microbial communities present a peculiar structure and functioning. By means of bioassay experiments, we observed that bacterial production and growth rates are higher in Europa than those reported for the other islands. Tromelin, which lies outside the Mozambique Channel, had the lowest biological productivity, nutrient concentrations, and bacterial growth rates. Multivariate analysis indicated that distinct microbial assemblages occur in association to varying nutrient concentrations. Molecular fingerprinting showed clear discrimination of the structure of the archaea, bacteria and eukaryotes community between the sites. Our results suggest that the geographical distance can influence the diversity of dominant microbial taxa in the WIO.
|
|
Matthews, T. J., et al. "Island species–area relationships and species accumulation curves are not equivalent: an analysis of habitat island datasets." Global Ecology and Biogeography. 25.5 (2016): 607–618.
Résumé: Aim The relationship between species number and area is of fundamental importance in macroecology and conservation science, yet the implications of different means of quantitative depiction of the relationship remain contentious. We set out (1) to establish the variation in form of the relationship between two distinct methods applied to the same habitat island datasets, (2) to explore the relevance of several key dataset properties for variation in the parameters of these relationships, and (3) to assess the implications for application of the resulting models. Locations Global. Methods Through literature search we compiled 97 habitat island datasets. For each we analysed the form of the island species–area relationship (ISAR) and several versions of species accumulation curve (SAC), giving priority to a randomized form (Ran-SAC). Having established the validity of the power model, we compared the slopes (z-values) between the ISAR and the SAC for each dataset. We used boosted regression tree and simulation analyses to investigate the effect of nestedness and other variables in driving observed differences in z-values between ISARs and SACs. Results The Ran-SAC was steeper than the ISAR in 77% of datasets. The differences were primarily driven by the degree of nestedness, although other variables (e.g. the number of islands in a dataset) were also important. The ISAR was often a poor predictor of archipelago species richness. Main conclusions Slopes of the ISAR and SAC for the same data set can vary substantially, revealing their non-equivalence, with implications for applications of species–area curve parameters in conservation science. For example, the ISAR was a poor predictor of archipelagic richness in datasets with a low degree of nestedness. Caution should be employed when using the ISAR for the purposes of extrapolation and prediction in habitat island systems.
|
|
2013 |
Lyons, W. B., et al. "Geochemistry of streams from Byers Peninsula, Livingston Island." Antarctic Science. 25.2 (2013): 181–190.
Résumé: In January and February 2009, a series of water samples were collected from streams on Byers Peninsula. These samples were analysed for major elements and delta O-18 to determine the role of lithology and landscape position on stream geochemistry, and to understand better the hydrology (i.e. residence time of water) of these systems. Precipitation chemistry is enriched in Na+, as are the streams located close to the coast. Streams originating from inland locations have much higher percentages of Ca2+. In contrast, Mg2+ varied little, though streams that are in greater contact with volcanic-derived soils have slightly higher concentrations. Anion percentages varied greatly between streams with SO42- ranging from 5% to 45% of the anion composition. Dissolved Si concentrations as high as 141 mu M were observed. All these data suggest that active chemical weathering is occurring in this region. A time series over 13 days at one stream showed little variation in major element geochemistry. The delta O-18 of precipitation samples collected over this same period varied by similar to 10 parts per thousand while the majority of stream samples varied less than similar to 1.5 parts per thousand. These data indicate that the stream waters represent mixtures of precipitation events, melting snow and water from the subsurface that had gained solutes through chemical weathering.
|
|