Accueil | << 1 2 3 >> |
![]() |
Dias, M. S., Oberdorff, T., Hugueny, B., Leprieur, F., Jezequel, C., Cornu, J. F., et al. (2014). Global imprint of historical connectivity on freshwater fish biodiversity. Ecology Letters, 17(9), 1130–1140.
Résumé: The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo-drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controlling for contemporary and past environmental conditions, we found that palaeo-connected basins displayed greater species richness but lower levels of endemism and beta diversity than did palaeo-disconnected basins. Palaeo-connected basins exhibited shallower distance decay of compositional similarity, suggesting that palaeo-river connections favoured the exchange of fish species. Finally, we found that a longer period of palaeo-connection resulted in lower levels of beta diversity. These findings reveal the first unambiguous results of the role played by history in explaining the global contemporary patterns of biodiversity.
Mots-Clés: Alpha diversity; Beta diversity; Biogeography; Quaternary climate changes; africa; climate changes; contemporary; diversity patterns; endemism; evolution; freshwater fish; global; history; north-america; richness; river systems; scale; sea-level changes; species turnover; species-richness
|
Duponchelle, F., Pouilly, M., Pecheyran, C., Hauser, M., Renno, J. - F., Panfili, J., et al. (2016). Trans-Amazonian natal homing in giant catfish. J. Appl. Ecol., 53(5), 1511–1520.
Résumé: 1. Knowledge of fish migration is a prerequisite to sustainable fisheries management and preservation, especially in large international river basins. In particular, understanding whether a migratory lifestyle is compulsory or facultative, and whether adults home to their natal geographic area is paramount to fully appraise disruptions of longitudinal connectivity resulting from damming. 2. In the Amazon, the large migratory catfishes of the Brachyplatystoma genus are apex predators of considerable interest for fisheries. They are believed to use the entire length of the basin to perform their life cycle, with hypothesized homing behaviours. Here, we tested these hypotheses, using the emblematic B. rousseauxii as a model species. 3. We sampled adults close to major breeding areas in the Amazon basin (upper Madeira and upper Amazonas) and assessed their lifetime movements by measuring variations in Sr-87/Sr-86 along transverse sections of their otoliths (ear stones) using laser ablation multicollector mass spectrometry (LA-MC-ICPMS). 4. We demonstrate that larvae migrate downstream from the Andean piedmont to the lower Amazon, where they grow over a protracted period before migrating upstream as adults. Contrary to prevailing inferences, not all fish spend their nursery stages in the Amazon estuary,. By contrast, the passage in the lower or central Amazon seems an obligate part of the life cycle. We further evidence that most adults home to their natal geographic area within the Madeira sub-basin. Such long-distance natal homing is exceptional in purely freshwater fishes. 5. Synthesis and applications. By using otolith microchemistry, we were able to demonstrate a seemingly compulsory basin-wide migratory life cycle of large Amazonian catfishes. This makes them the organisms performing the longest migrations ( >8000 km) in fresh waters. This exceptional life history is already jeopardized by two dams recently built in the Madeira River, which block a major migration route and access to a substantial part of their spawning grounds. Major impacts can be anticipated from the current and forthcoming hydroelectric development in the Amazon basin, not only on the populations and fisheries of this apex predator, but also on Amazonian food webs through trophic cascades.
Mots-Clés: Amazon; anthropogenic activities; brachyplatystoma-rousseauxii; Brachyplatystoma spp.; fisheries; fish otoliths; freshwater fish; giant catfish; hydroelectric dams; hydropower; isotopic signatures; markers; mass spectrometry; migration; migratory catfish; otoliths; pimelodidae; river; Sr-87/Sr-86 ratios
|
Leprieur, F., & Oikonomou, A. (2014). The need for richness-independent measures of turnover when delineating biogeographical regions. Journal of Biogeography, 41(2), 417–420. |
Leroy, B., Dias, M. S., Giraud, E., Hugueny, B., Jezequel, C., Leprieur, F., et al. (2019). Global biogeographical regions of freshwater fish species. J. Biogeogr., .
Résumé: Aim To define the major biogeographical regions and transition zones for freshwater fish species. Taxon Strictly freshwater species of actinopterygian fish (i.e. excluding marine and amphidromous fish families). Methods We based our bioregionalization on a global database of freshwater fish species occurrences in drainage basins, which, after filtering, includes 11,295 species in 2,581 basins. On the basis of this dataset, we generated a bipartite (basin-species) network upon which we applied a hierarchical clustering algorithm (the Map Equation) to detect regions. We tested the robustness of regions with a sensitivity analysis. We identified transition zones between major regions with the participation coefficient, indicating the degree to which a basin has species from multiple regions. Results Our bioregionalization scheme showed two major supercontinental regions (Old World and New World, 50% species of the world and 99.96% endemics each). Nested within these two supercontinental regions lie six major regions (Nearctic, Neotropical, Palearctic, Ethiopian, Sino-Oriental and Australian) with extremely high degrees of endemism (above 96% except for the Palearctic). Transition zones between regions were of limited extent compared to other groups of organisms. We identified numerous subregions with high diversity and endemism in tropical areas (e.g. Neotropical), and a few large subregions with low diversity and endemism at high latitudes (e.g. Palearctic). Main conclusions Our results suggest that regions of freshwater fish species were shaped by events of vicariance and geodispersal which were similar to other groups, but with freshwater-specific processes of isolation that led to extremely high degrees of endemism (far exceeding endemism rates of other continental vertebrates), specific boundary locations and limited extents of transition zones. The identified bioregions and transition zones of freshwater fish species reflect the strong isolation of freshwater fish faunas for the past 10-20 million years. The extremely high endemism and diversity of freshwater fish fauna raises many questions about the biogeographical consequences of current introductions and extinctions.
|
Oikonomou, A., Leprieur, F., & Leonardos, I. D. (2014). Biogeography of freshwater fishes of the Balkan Peninsula. Hydrobiologia, 738(1), 205–220.
Résumé: Delineating biogeographical regions is a critical step towards the establishment and evaluation of conservation priorities. In the present study, we analysed the distribution patterns of the freshwater fish of an understudied European biodiversity hotspot, the Balkan Peninsula. Based on the most extensive available database of native freshwater fish species distributions, we performed a hierarchical clustering analysis to identify the major biogeographical regions of the Balkan Peninsula. We also highlighted the 'hottest hotspots' of freshwater fish diversity across the delimited biogeographical regions by describing the patterns of species richness, endemic and vulnerable species; indicator species were also determined. The bioregionalisation scheme consisted of eight groups of drainage basins that correspond to distinct regions of the Balkan Peninsula. Overall, the delineated biogeographical regions varied in terms of species richness, endemism, vulnerability (i.e. extinction threats) and indicator species composition. From a conservation perspective, this study emphasises the prioritisation of areas characterised by high levels of irreplaceability (endemism) and vulnerability (i.e. the Attikobeotia region, Ionian Sea and Prespa Lakes) and stresses the necessity of implementing a network of protected freshwater areas across the Balkan Peninsula.
|