|
BANARU, D., MELLON, C., ROOS, D., BIGOT, J. - L., SOUPLET, A., JADAUD, A., et al. (2013). Trophic structure in the Gulf of Lions marine ecosystem (north-western Mediterranean Sea) and fishing impacts. Journal Of Marine Systems, 111, 45–68.
Résumé: The Gulf of Lions ecosystemwas described using the Ecopath mass-balancemodel to characterise its structure and functioning and to examine the effects of themultispecific fisheries operating in this area. The model is composed of 40 compartments, including 1 group of seabirds, 2 groups of etaceans, 18 groups of fish, 12 groups of invertebrates, 5 groups of primary producers, detritus and discards. Input datawere based on several recurrent scientific surveys, two alternative datasets for fishing data, stock assessment outputs, stomach content analyses and published information. Results showed that the functional groups were organised into five trophic levels with the highest one represented by dolphins, anglerfish, Atlantic bluefin tuna, European hake and European conger. European pilchard and European anchovy dominated in terms of fish biomass and catch. Other fish with high biomass such as Atlantic mackerel and blue whiting were highly important in the food web. Seabirds, dolphins and cuttlefish–squids represented keystone species. Important coupled pelagic–demersal–benthic interactions were described. The 7 different fisheries analysed were operating at mean trophic levels situated between 2.6 for small artisanal boats, and 4.1 for purse seines (>24 m) targeting large pelagic fish, indicating an intensively exploited ecosystem. Large trawlers (24–40 m) had the highest impact on most of the groups considered; while purse seines (12–24 m) targeting small pelagic fish had the lowest impact. Preliminary results highlighted the importance of data sources for further ecosystem and fisheries analyses and management scenarios.
|
|
|
Batsleer, J., Marchal, P., Vaz, S., Vermard, V., Rijnsdorp, A. D., & Poos, J. J. (2018). Exploring habitat credits to manage the benthic impact in a mixed fishery. Mar. Ecol.-Prog. Ser., 586, 167–179.
Résumé: The performance of a combined catch quota and habitat credit system was explored to manage the sustainable exploitation of a mix of demersal fish species and reduce the benthic impacts of bottom trawl fisheries using a dynamic state variable model approach. The model was parameterised for the Eastern English Channel demersal mixed fishery using otter trawls or dredges. Target species differed in their association with habitat types. Restricting catch quota for plaice and cod had a limited effect on benthic impact, except when reduced to very low values, forcing the vessels to stay in port. Quota management had a minimal influence on fishing behaviour and hence resulted in a minimal reduction of benthic impact. Habitat credits may reduce the benthic impacts of the trawl fisheries at a minimal loss of landings and revenue, as vessels are still able to reallocate their effort to less vulnerable fishing grounds, while allowing the fishery to catch their catch quota and maintain their revenue. Only if they are reduced to extremely low levels can habitat credits potentially constrain fishing activities to levels that prevent the fisheries from using up the catch quota for the target species.
|
|
|
Baudrier, J., Lefebvre, A., Galgani, F., Saraux, C., & Doray, M. (2018). Optimising French fisheries surveys for marine strategy framework directive integrated ecosystem monitoring. Marine Policy, 94, 10–19.
Résumé: The French initial assessment of the Marine Strategy Framework Directive (MSFD) highlighted the lack of reliable data concerning offshore areas. During the planning of the monitoring programmes, the scientists therefore proposed to partially cover this gap by using existing fisheries research vessel surveys deployed for the purposes of the Common Fisheries Policy (CFP). This paper describes ways of improving the effectiveness of these surveys and making them better suited to delivering the information needed for the MSFD. The process took two years and became operational at the beginning of the year 2016. Testing phases from October 2013 to August 2015 had to be organized to fit within the ongoing fisheries tasks without significantly increasing the workload in terms of both time and human resources. Six fisheries research surveys henceforth collect new data, with or without additional sampling techniques. Specific examples are given with litter and hydrological data which will be used to assess the environmental status of French marine waters. The paper also identifies certain limitations regarding this approach. This French experiment enabled more efficient and effective use of current data collection efforts, while optimising vessel time and implementing an ecosystem approach in collecting data for fisheries management.
|
|
|
Beckensteiner, J., Scheld, A. M., Fernandez, M., & Kaplan, D. M. (2020). Drivers and trends in catch of benthic resources in Chilean TURFs and surrounding open access areas. Ocean Coastal Manage., 183, 104961.
Résumé: Beginning in the 1990's, Chile implemented an extensive Territorial User Rights for Fisheries (TURFs) network that now comprises nearly 1,000 TURFs. This network provides a rare opportunity to examine spatial and temporal trends in TURF use and impacts on surrounding open access areas (OAAs). In this analysis, landings of keyhole limpet (Fissurella spp.), kelp (Lessonia spp.) and red sea urchin (Loxechinus albus) were used to estimate catch-per-unit effort (CPUEs) and catch-per-unit area (CPUAs) indices inside and outside TURFs by fishing cove. For these species, CPUEs and CPUAs in 2015 were significantly higher inside TURFs. However, temporal trends analyzed with a linear mixed effects model indicate that CPUAs inside TURFs have been significantly decreasing since 2000 for keyhole limpet, red sea urchin and for loco (Concholepas concholepas), while in OAAs this measure only decreased for limpet. An elastic net regression was used to better explain catches in OAAs during 2015, including a variety of variables related to the characteristics and activity of proximal TURFs. Results indicate that exogenous factors unrelated to TURF management were the primary drivers of catches in OAAs during 2015 but that factors related to proximal TURFs appear to have a slight negative impact that grows over time. Collectively, these results indicate that while TURFs are associated with higher catch rates than surrounding OAAs, catch rates appear to be decreasing over time and, though limited, the impact of TURFs on surrounding OAAs may be negative. These findings suggest a need for a more nuanced and dynamic approach to spatial management on benthic resources in Chile.
|
|
|
Bender, M. G., Pie, M. R., Rezende, E. L., Mouillot, D., & Floeter, S. R. (2013). Biogeographic, historical and environmental influences on the taxonomic and functional structure of Atlantic reef fish assemblages. Global Ecology and Biogeography, 22(11), 1173–1182.
Résumé: Aim To disentangle how historic, biogeographic and environmental factors have shaped the composition of different reef fish assemblages, we analysed assemblage structure from a taxonomic (proportions of species from different families) and functional perspective (diet and body size). Location Atlantic Ocean. Methods The distributions of 1629 fish species were compiled for 31 locations across the Atlantic Ocean (39°66′ N, 27°50′ S). These locations provide a richness gradient ranging from 54 species in St Paul's Rocks to 474 in Cuba. We used cluster analyses to assess how historical and biogeographic factors have shaped the taxonomic and functional structure (i.e. the distribution of species within families, diet and body size groups) of assemblages. We then employed a constrained analysis of principal coordinates (CAP) to test the relative influence of the distance from the biodiversity centre in the Atlantic, sea surface temperature, isolation, coral species richness and area, and coastal length on the observed patterns of assemblage structure. Results The taxonomic and functional structure of reef fish assemblages across the Atlantic exhibits a biogeographic fingerprint, with a marked discrimination between species-rich biogenic reefs (concentrated primarily in the Caribbean and composed of small species feeding on invertebrates) and poorer peripheral regions dominated by larger species with more diverse diets. The first CAP axis explains 87% of body size distribution in assemblages, showing that the effects of sea surface temperature and coral richness and those of isolation are antagonistic and can be embedded into a single dimension. Environmental factors, such as temperature and habitat complexity, explain the disproportionate number of small species in the Caribbean, whereas in the remaining regions the predominance of large-bodied fish increases with isolation due to high dispersal ability. Main conclusions We found that historical events, which have shaped the biogeography of reef fishes, and environmental characteristics (coral reefs versus periphery) have both played a role in structuring the taxonomic and functional components of Atlantic fish assemblages.
|
|