Accueil | << 1 >> |
![]() |
Chao, A., Chiu, C. - H., Villeger, S., Sun, I. - F., Thorn, S., Lin, Y. - C., et al. (2019). An attribute-diversity approach to functional diversity, functional beta diversity, and related (dis)similarity measures. Ecol. Monogr., 89(2), Unsp-e01343.
Résumé: Based on the framework of attribute diversity (a generalization of Hill numbers of order q), we develop a class of functional diversity measures sensitive not only to species abundances but also to trait-based species-pairwise functional distances. The new method refines and improves on the conventional species-equivalent approach in three areas: (1) the conventional method often gives similar values (close to unity) to assemblages with contrasting levels of functional diversity; (2) when a distance metric is unbounded, the conventional functional diversity depends on the presence/absence of other assemblages in the study; (3) in partitioning functional gamma diversity into alpha and beta components, the conventional gamma is sometimes less than alpha. To resolve these issues, we add to the attribute-diversity framework a novel concept: tau, the threshold of functional distinctiveness between any two species; here, tau can be chosen to be any positive value. Any two species with functional distance >= tau are treated as functionally equally distinct. Our functional diversity quantifies the effective number of functionally equally distinct species (or “virtual functional groups”) with all pairwise distances at least tau for different species pairs. We advocate the use of two complementary diversity profiles (tau profile and q profile), which depict functional diversity with varying levels of tau and q, respectively. Both the conventional species-equivalent method (i.e., tau is the maximum of species-pairwise distances) and classic taxonomic diversity (i.e., tau is the minimum of non-zero species-pairwise distances) are incorporated into our proposed tau profile for an assemblage. For any type of species-pairwise distance matrices, our attribute-diversity approach allows proper diversity partitioning, with the desired property gamma >= alpha and thus avoids all the restrictions that apply to the conventional diversity decomposition. Our functional alpha and gamma are interpreted as the effective numbers of functionally equally distinct species, respectively, in an assemblage and in the pooled assemblage, while beta is the effective number of equally large assemblages with no shared species and all species in the assemblages being equally distinct. The resulting beta diversity can be transformed to obtain abundance-sensitive Sorensen- and Jaccard-type functional (dis)similarity profiles. Hypothetical and real examples are used to illustrate the framework. Online software and R codes are available to facilitate computations.
Mots-Clés: attribute diversity; biodiversity; biological diversity; consensus; conservation; differentiation measures; diversity decomposition; evenness; framework; functional (dis)similarity; functional beta diversity; functional diversity; Hill numbers; phylogenetic diversity; quadratic entropy; similarity; species diversity; species richness; species traits; trait diversity
|
Chiarello, M., Auguet, J. - C., Graham, N. A. J., Claverie, T., Sucre, E., Bouvier, C., et al. (2020). Exceptional but vulnerable microbial diversity in coral reef animal surface microbiomes. Proc. R. Soc. B-Biol. Sci., 287(1927), 20200642.
Résumé: Coral reefs host hundreds of thousands of animal species that are increasingly threatened by anthropogenic disturbances. These animals host microbial communities at their surface, playing crucial roles for their fitness. However, the diversity of such microbiomes is mostly described in a few coral species and still poorly defined in other invertebrates and vertebrates. Given the diversity of animal microbiomes, and the diversity of host species inhabiting coral reefs, the contribution of such microbiomes to the total microbial diversity of coral reefs could be important, yet potentially vulnerable to the loss of animal species. Analysis of the surface microbiome from 74 taxa, including teleost fishes, hard and soft corals, crustaceans, echinoderms, bivalves and sponges, revealed that more than 90% of their prokaryotic phylogenetic richness was specific and not recovered in surrounding plankton. Estimate of the total richness associated with coral reef animal surface microbiomes reached up to 2.5% of current estimates of Earth prokaryotic diversity. Therefore, coral reef animal surfaces should be recognized as a hotspot of marine microbial diversity. Loss of the most vulnerable reef animals expected under present-day scenarios of reef degradation would induce an erosion of 28% of the prokaryotic richness, with unknown consequences on coral reef ecosystem functioning.
|
Jeanmougin, M., Leprieur, F., Lois, G., & Clergeau, P. (2014). Fine-scale urbanization affects Odonata species diversity in ponds of a megacity (Paris, France). Acta Oecologica-International Journal of Ecology, 59, 26–34.
Résumé: Current developments in urban ecology include very few studies focused on pond ecosystems, though ponds are recognized as biodiversity hotspots. Using Odonata as an indicator model, we explored changes in species composition in ponds localized along an urban gradient of a megacity (Paris, France). We then assessed the relative importance of local- and landscape-scale variables in shaping Odonata alpha-diversity patterns using a model-averaging approach. Analyses were performed for adult (A) and adult plus exuviae (AE) census data. At 26 ponds, we recorded 657 adults and 815 exuviae belonging to 17 Odonata species. The results showed that the Odonata species assemblage composition was not determined by pond localization along the urban gradient. Similarly, pond characteristics were found to be similar among urban, suburban and periurban ponds. The analyses of AE census data revealed that fine-scale urbanization (i.e., increased density of buildings surrounding ponds) negatively affects Odonata alpha-diversity. In contrast, pond localization along the urban gradient weakly explained the alpha-diversity patterns. Several local-scale variables, such as the coverage of submerged macrophytes, were found to be significant drivers of Odonata alpha-diversity. Together, these results show that the degree of urbanization around ponds must be considered instead of pond localization along the urban gradient when assessing the potential impacts of urbanization on Odonata species diversity This work also indicates the importance of exuviae sampling in understanding the response of Odonata to urbanization. (C) 2014 Elsevier Masson SAS. All rights reserved.
|
Loiseau, N., Gaertner, J. - C., Kulbicki, M., Mérigot, B., Legras, G., Taquet, M., et al. (2016). Assessing the multicomponent aspect of coral fish diversity: The impact of sampling unit dimensions. Ecological Indicators, 60, 815–823.
Résumé: The influence of variations in sampling unit dimensions on the assessment of fish species structuring has been widely documented. However, this issue has been restricted to a very limited range of community and population indices (mainly species richness and density). Here, we have investigated this issue through the analysis of 13 diversity indices related to 3 diversity components (number of species, evenness and functional diversity). We analyzed a large set of 257 standardized underwater visual census (UVC) transects dealing with 254 coral fish species. The sensitivity of the indices to the variation in sampling unit dimensions was studied by comparing a range of 55 couples of transect length and width representing 34 sampling surfaces. We found that the extent and profile of the sensitivity to changes in transect dimensions strongly varied both from one index to another and from one dimension to another (length and width). The most sensitive indices were more strongly impacted by variation in length than width. We also showed that for a fixed transect surface, the couple of chosen length and width may alter the assessment of indices related to each of the three main diversity components studied. Some widely used diversity indices, such as species richness and Shannon index, appeared to be very sensitive to changes in transect length and width. In contrast, while still very little used in coral fish studies, two functional diversity indices (FDiv, FEve), and to a lesser extent an evenness index (Berger–Parker), remained robust in the face of change in sampling dimensions. By showing that the variation in sampling dimensions (length, width and surface) may impact diversity indices in a contrasting manner, we stress the need to take into account the sensitivity of the indices to this criterion in the process of selection of the indices to be analyzed in diversity studies. Finally, we found that 30 m long*5 m wide transects might be a suitable compromise size for assessing the patterns of each of the three major complementary components of coral fish diversity.
|
Mason, N. W. H., de Bello, F., Mouillot, D., Pavoine, S., & Dray, S. (2013). A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. J Veg Sci, 24(5), 794–806.
Résumé: Question Which functional diversity indices have the power to reveal changes in community assembly processes along abiotic stress gradients? Is their power affected by stochastic processes and variations in species richness along stress gradients?
Methods We used a simple community assembly model to explore the power of functional diversity indices across a wide range of ecological contexts. FD) and convex hull volume (FRic) – with a matrix-swap null model (yielding indices SESFD and SESFRic) to remove any trivial effects of species richness. We also compared two indices that measure both functional richness and functional divergence – Rao quadratic entropy (Rao) and functional dispersion (FDis) – with a null model that randomizes abundances across species but within communities. SESRao and SESFDis). Results When mass effects operated, only SESRao and SESFDis gave reasonable power, irrespective of how species richness varied along the stress gradient. FD, FRic, Rao and FDis had low power when species richness was constant, and variation in species richness greatly influenced their power. SESFRic and SESFD were unaffected by variation in species richness. When priority effects operated, FRic, SESFRic, Rao and FDis had good power and were unaffected by variation in species richness. Variation in species richness greatly affected FD and SESFD. SESRao and SESFDis had low power in the priority effects model but were unaffected by variation in species richness. Conclusions Our results demonstrate that a reliable test for changes in assembly processes along stress gradients requires functional diversity indices measuring either functional richness or functional divergence. We recommend using SESFRic as a measure of functional richness and either SESRao or SESFDis (which are very closely related mathematically) as a measure of functional divergence. Used together, these indices of functional richness and functional divergence provide good power to test for increasing niche complementarity with declining stress across a broad range of ecological contexts. |