|
Ottimofiore, E., Albouy, C., Leprieur, F., Descombes, P., Kulbicki, M., Mouillot, D., et al. (2017). Responses of coral reef fishes to past climate changes are related to life-history traits. Ecol. Evol., 7(6), 1996–2005.
Résumé: Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present-day distributions of coral reef fish species. We investigated whether species-specific responses are associated with life-history traits. We collected a database of coral reef fish distribution together with life-history traits for the Indo-Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo-Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change.
|
|
|
Buisson, L., Grenouillet, G., Villeger, S., Canal, J., & Laffaille, P. (2013). Toward a loss of functional diversity in stream fish assemblages under climate change. Glob. Change Biol., 19(2), 387–400.
Résumé: The assessment of climate change impacts on biodiversity has so far been biased toward the taxonomic identification of the species likely either to benefit from climate modifications or to experience overall declines. There have still been few studies intended to correlate the characteristics of species to their sensitivity to climate change, even though it is now recognized that functional trait-based approaches are promising tools for addressing challenges related to global changes. In this study, two functional indices (originality and uniqueness) were first measured for 35 fish species occurring in French streams. They were then combined to projections of range shifts in response to climate change derived from species distribution models. We set out to investigate: (1) the relationship between the degrees of originality and uniqueness of fish species, and their projected response to future climate change; and (2) the consequences of individual responses of species for the functional diversity of fish assemblages. After accounting for phylogenetic relatedness among species, we have demonstrated that the two indices used measure two complementary facets of the position of fish species in a functional space. We have also rejected the hypothesis that the most original and/or less redundant species would necessarily experience the greatest declines in habitat suitability as a result of climate change. However, individual species range shifts could lead simultaneously both to a severe decline in the functional diversity of fish assemblages, and to an increase in the functional similarity among assemblages, supporting the hypothesis that disturbance favors communities with combination of common traits and biotic homogenization as well. Our findings therefore emphasize the importance of going beyond the simple taxonomic description of diversity to provide a better assessment of the likely future effects of environmental changes on biodiversity, thus helping to design more effective conservation and management measures.
|
|
|
Gaboriau, T., Albouy, C., Descombes, P., Mouillot, D., Pellissier, L., & Leprieur, F. (2019). Ecological constraints coupled with deep-time habitat dynamics predict the latitudinal diversity gradient in reef fishes. Proc. R. Soc. B-Biol. Sci., 286(1911), 20191506.
Résumé: We develop a spatially explicit model of diversification based on palaeohabitat to explore the predictions of four major hypotheses potentially explaining the latitudinal diversity gradient (LDG), namely, the 'time-area', 'tropical niche conservatism', 'ecological limits' and 'evolutionary speed' livpotheses. We compare simulation outputs to observed diversity gradients in the global reef fish fauna. Our simulations show that these hypotheses are nonmutually exclusive and that their relative influence depends on the time scale considered. Simulations suggest that reef habitat dynamics produced the LDG during deep geological time, while ecological constraints shaped the modern LDG, with a strong influence of the reduction in the latitudinal extent of tropical reefs during the Neogene. Overall, this study illustrates how mechanistic models in ecology and evolution can provide a temporal and spatial understanding of the role of speciation, extinction and dispersal in generating biodiversity patterns.
|
|