Accueil | << 1 2 3 4 >> |
![]() |
Alves-Junior, F. de A., Bertrand, A., Camara de Araujo, M. de A. L., de Carvalho Paiva, R. J., & de Souza-Filho, J. F. (2019). First Report of the Ectoparasitic Isopod, Holophryxus acanthephyrae Stephensen 1912 (Cymothoida: Dajidae) in the South Atlantic: Recovered from a New Host, the Deep-Sea Shrimp, Acanthephyra acanthitelsonis Spence Bate, 1888. Thalassas, 35(1), 13–15.
Résumé: The crustacean family of isopods, Dajidae, comprises 18 genera containing 54 species with widespread distribution. The species of this family are ectoparasites, especially on euphausiids, mysids and shrimps. The species of Holophryxus acanthephyrae has a life cycle involving a first intermediate host (copepod) and a definitive host (shrimp), and adheres particularly on deep-sea shrimps of genus Acanthephyra. Here, we make the first report of dajid isopod Holophryxus acanthephyrae from Brazilian waters (South Atlantic) and the first occurrence as parasite on deep-sea shrimp Acanthephyra acanthitelsonis. The specimen was collected under the framework of the project ABRACOS 2 (Acoustic along the BRazilian COast), on board of R/V Antea in April 2017, using a Micronekton net (mesh size of 10mm) in Rocas Atoll. The specimen female of Holophryxus acanthephyrae was found in pelagic zone in Rocas Atoll, at 630m depth. This study increases the knowledge on Dajidae family and their host range.
Mots-Clés: Brazilian waters; Deep-sea shrimp; epicaridea; genus; Isopods; Parasitism; Rocas Atoll
|
Alves-Júnior, F. D. A., Silva, E. D. S., Araújo, M. D. S. L. C. D., Cardoso, I., Bertrand, A., & Souza-Filho, J. F. (2019). Taxonomy of deep-sea shrimps of the Superfamily Oplophoroidea Dana 1852 (Decapoda: Caridea) from Southwestern Atlantic. Zootaxa, 4613(3), 401–442.
Résumé: In this paper, we provide some available information about the occurrence and some taxonomic aspects of 19 species from the Superfamily Oplophoroidea in the southwestern Atlantic (Brazilian waters), with the update to 22 species of Oplophoroidea occurring in Brazilian waters. Samples were collected during two sets of surveys. The first was performed in 2009 and 2011 in the Potiguar Basin in northeast of Brazil (03–05°S; 38–35°W; between the States of Ceará and Rio Grande do Norte) under the framework of the project “Avaliação da biota bentônica e planctônica da Bacia Potiguar e Ceará (Bpot)”, with samples collected from bottom trawls in the continental slope at depth ranging from 150–2068 m. Second, under the in the framework of the ABRACOS (Acoustic along the Brazilian coast), performed in 2015 and 2017 on seamounts and offshore areas in Northeast Brazil (Ceará Chain, Rio Grande do Norte and Rocas Atoll, Fernando de Noronha Archipelago and Pernambuco State), with samples with pelagic micronekton and mesopelagic nets, in depths ranging from 50–1260 m. We highlight the occurrence of 14 species of the family Acanthephyridae and 5 species of the family Oplophoridae, including the first occurrences of five species to Brazilian deep waters: Acanthephyra kingsleyi Spence Bate, 1888, Ephyrina ombango Crosnier & Forest, 1973, Meningodora compsa (Chace, 1940), M. longisulca Kikuchi, 1985 and Systellapsis curvispina Crosnier, 1987. These records increase the knowledge on deep-sea shrimps occurring in Southwestern Atlantic.
|
Arnaud-Haond, S., van den Beld, I. M. J., Becheler, R., Orejas, C., Menot, L., Frank, N., et al. (2017). Two “pillars” of cold-water coral reefs along Atlantic European margins: Prevalent association of Madrepora oculata with Lophelia pertusa, from reef to colony scale. Deep-Sea Res. Part II-Top. Stud. Oceanogr., 145, 110–119.
Résumé: The scleractinian coral Lophelia pertusa has been the focus of deep-sea research since the recognition of the vast extent of coral reefs in North Atlantic waters two decades ago, long after their existence was mentioned by fishermen. These reefs where shown to provide habitat, concentrate biomass and act as feeding or nursery grounds for many species, including those targeted by commercial fisheries. Thus, the attention given to this cold-water coral (CWC) species from researchers and the wider public has increased. Consequently, new research programs triggered research to determine the full extent of the corals geographic distribution and ecological dynamics of “Lophelia reefs”. The present study is based on a systematic standardised sampling design to analyze the distribution and coverage of CWC reefs along European margins from the Bay of Biscay to Iceland. Based on Remotely Operated Vehicle (ROV) image analysis, we report an almost systematic occurrence of Madrepora oculata in association with L. pertusa with similar abundances of both species within explored reefs, despite a tendency of increased abundance of L. pertusa compared to M. oculata toward higher latitudes. This systematic association occasionally reached the colony scale, with “twin” colonies of both species often observed growing next to each other when isolated structures were occurring offireefs. Finally, several “false chimaera” were observed within reefs, confirming that colonial structures can be “coral bushes” formed by an accumulation of multiple colonies even at the inter-specific scale, with no need for self-recognition mechanisms. Thus, we underline the importance of the hitherto underexplored M. oculata in the Eastern Atlantic, reestablishing a more balanced view that both species and their yet unknown interactions are required to better elucidate the ecology, dynamics and fate of European CWC reefs in a changing environment.
|
Boavida, J., Becheler, R., Choquet, M., Frank, N., Taviani, M., Bourillet, J. - F., et al. (2019). Out of the Mediterranean? Post-glacial colonization pathways varied among cold-water coral species. J. Biogeogr., 46(5), 915–931.
Résumé: Aim: To infer cold-water corals' (CWC) post-glacial phylogeography and assess the role of Mediterranean Sea glacial refugia as origins for the recolonization of the northeastern Atlantic Ocean. Location: Northeastern Atlantic Ocean and Mediterranean Sea. Taxon: Lophelia pertusa, Madrepora oculata. Methods: We sampled CWC using remotely operated vehicles and one sediment core for coral and sediment dating. We characterized spatial genetic patterns (microsatellites and a nuclear gene fragment) using networks, clustering and measures of genetic differentiation. Results: Inferences from microsatellite and sequence data were congruent, and showed a contrast between the two CWC species. Populations of L. pertusa present a dominant pioneer haplotype, local haplotype radiations and a majority of endemic variation in lower latitudes. Madrepora oculata populations are differentiated across the northeastern Atlantic and genetic lineages are poorly admixed even among neighbouring sites. Conclusions: Our study shows contrasting post-glacial colonization pathways for two key habitat-forming species in the deep sea. The CWC L. pertusa has likely undertaken a long-range (post-glacial) recolonization of the northeastern Atlantic directly from refugia located along southern Europe (Mediterranean Sea or Gulf of Cadiz). In contrast, the stronger genetic differentiation of M. oculata populations mirrors the effects of long-term isolation in multiple refugia. We suggest that the distinct and genetically divergent, refugial populations initiated the post-glacial recolonization of the northeastern Atlantic margins, leading to a secondary contact in the northern range and reaching higher latitudes much later, in the late Holocene. This study highlights the need to disentangle the influences of present-day dispersal and evolutionary processes on the distribution of genetic polymorphisms, to unravel the influence of past and future environmental changes on the connectivity of cosmopolitan deep-sea ecosystems associated with CWC.
|
Brandt, M., Trouche, B., Henry, N., Liautard-Haag, C., Maignien, L., de Vargas, C., et al. (2020). An Assessment of Environmental Metabarcoding Protocols Aiming at Favoring Contemporary Biodiversity in Inventories of Deep-Sea Communities. Front. Mar. Sci., 7, 234.
Résumé: The abyssal seafloor covers more than 50% of planet Earth and is a large reservoir of still mostly undescribed biodiversity. It is increasingly targeted by resource-extraction industries and yet is drastically understudied. In such remote and hard-to-access ecosystems, environmental DNA (eDNA) metabarcoding is a useful and efficient tool for studying biodiversity and implementing environmental impact assessments. Yet, eDNA analysis outcomes may be biased toward describing past rather than present communities as sediments contain both contemporary and ancient DNA. Using commercially available kits, we investigated the impacts of five molecular processing methods on eDNA metabarcoding biodiversity inventories targeting prokaryotes (16S), unicellular eukaryotes (18S-V4), and metazoans (18S-V1, COI). As the size distribution of ancient DNA is skewed toward small fragments, we evaluated the effect of removing short DNA fragments via size selection and ethanol reconcentration using eDNA extracted from 10 g of sediment at five deep-sea sites. We also compare communities revealed by eDNA and environmental RNA (eRNA) co-extracted from similar to 2 g of sediment at the same sites. Results show that removing short DNA fragments does not affect alpha and beta diversity estimates in any of the biological compartments investigated. Results also confirm doubts regarding the possibility to better describe live communities using eRNA. With ribosomal loci, eRNA, while resolving similar spatial patterns than co-extracted eDNA, resulted in significantly higher richness estimates, supporting hypotheses of increased persistence of ribosomal RNA (rRNA) in the environment and unmeasured bias due to overabundance of rRNA and RNA release. With the mitochondrial locus, eRNA detected lower metazoan richness and resolved fewer spatial patterns than co-extracted eDNA, reflecting high messenger RNA lability. Results also highlight the importance of using large amounts of sediment (>= 10 g) for accurately surveying eukaryotic diversity. We conclude that eDNA should be favored over eRNA for logistically realistic, repeatable, and reliable surveys and confirm that large sediment samples (>= 10 g) deliver more complete and accurate assessments of benthic eukaryotic biodiversity and that increasing the number of biological rather than technical replicates is important to infer robust ecological patterns.
|