2018 |
Santos, B. S., et al. "Likely locations of sea turtle stranding mortality using experimentally-calibrated, time and space-specific drift models." Biol. Conserv.. 226 (2018): 127–143.
Résumé: Sea turtle stranding events provide an opportunity to study drivers of mortality, but causes of strandings are poorly understood. A general sea turtle carcass oceanographic drift model was developed to estimate likely mortality locations from coastal sea turtle stranding records. Key model advancements include realistic direct wind forcing on carcasses, temperature driven carcass decomposition and the development of mortality location predictions for individual strandings. We applied this model to 2009-2014 stranding events within the Chesapeake Bay, Virginia. Predicted origin of vessel strike strandings were compared to commercial vessel data, and potential hazardous turtle-vessel interactions were identified in the southeastern Bay and James River. Commercial fishing activity of gear types with known sea turtle interactions were compared to predicted mortality locations for stranded turtles with suggested fisheries-induced mortality. Probable mortality locations for these strandings varied seasonally, with two distinct areas in the southwest and southeast portions of the lower Bay. Spatial overlap was noted between potential mortality locations and gillnet, seine, pot, and pound net fisheries, providing important information for focusing future research on mitigating conflict between sea turtles and human activities. Our ability to quantitatively assess spatial and temporal overlap between sea turtle mortality and human uses of the habitat were hindered by the low resolution of human use datasets, especially those for recreational vessel and commercial fishing gear distributions. This study highlights the importance of addressing these data gaps and provides a meaningful conservation tool that can be applied to stranding data of sea turtles and other marine megafauna worldwide.
|
|
Zupan, M., et al. "How good is your marine protected area at curbing threats?" Biol. Conserv.. 221 (2018): 237–245.
Résumé: Marine protected areas (MPAs) are key tools to mitigate human impacts in coastal environments, promoting sustainable activities to conserve biodiversity. The designation of MPAs alone may not result in the lessening of some human threats, which is highly dependent on management goals and the related specific regulations that are adopted. Here, we develop and operationalize a local threat assessment framework. We develop indices to quantify the effectiveness of MPAs (or individual zones within MPAs in the case of multiple-use MPAs) in reducing anthropogenic extractive and non-extractive threats operating at local scale, focusing specifically on threats that can be managed through MPAs. We apply this framework in 15 Mediterranean MPAs to assess their threat reduction capacity. We show that fully protected areas effectively eliminate extractive activities, whereas the intensity of artisanal and recreational fishing within partially protected areas, paradoxically, is higher than that found outside MPAs, questioning their ability at reaching conservation targets. In addition, both fully and partially protected areas attract non-extractive activities that are potential threats. Overall, only three of the 15 MPAs had lower intensities for the entire set of eight threats considered, in respect to adjacent control unprotected areas. Understanding the intensity and occurrence of human threats operating at the local scale inside and around MPAs is important for assessing MPAs effectiveness in achieving the goals they have been designed for, informing management strategies, and prioritizing specific actions.
|
|
2017 |
Espinosa, F., and G. A. Rivera-Ingraham. "Biological Conservation of Giant Limpets: The Implications of Large Size." Ed. B. E. Curry. Advances in Marine Biology, Vol 76, 76. San Diego: Elsevier Academic Press Inc, 2017. 105–155.
Résumé: Patellogastropods, also known as true limpets, are distributed throughout the world and constitute key species in coastal ecosystems. Some limpet species achieve remarkable sizes, which in the most extreme cases can surpass 35 cm in shell length. In this review, we focus on giant limpets, which are defined as those with a maximum shell size surpassing 10 cm. According to the scientific literature, there are a total of 14 species across five genera that reach these larger sizes. Four of these species are threatened or in danger of extinction. Inhabiting the intertidal zones, limpets are frequently affected by anthropogenic impacts, namely collection by humans, pollution and habitat fragmentation. In the case of larger species, their conspicuous size has made them especially prone to human collection since prehistoric times. Size is not phylogeny-dependent among giant limpets, but is instead related to behavioural traits instead. Larger-sized species tend to be nonmigratory and territorial compared to those that are smaller. Collection by humans has been cited as the main cause behind the decline and/or extinction of giant limpet populations. Their conspicuously large size makes them the preferred target of human collection. Because they are protandric species, selectively eliminating larger specimens of a given population seriously compromises their viability and has led to local extinction events in some cases. Additionally, sustained collection over time may lead to microevolutionary responses that result in genetic changes. The growing presence of artificial structures in coastal ecosystems may cause population fragmentation and isolation, limiting the genetic flow and dispersion capacity of many limpet species. However, when they are necessitated, artificial structures could be managed to establish marine artificial microreserves and contribute to the conservation of giant limpet species that naturally settle on them.
|
|
Krause, J., et al. "Injury-mediated decrease in locomotor performance increases predation risk in schooling fish." Philos. Trans. R. Soc. B-Biol. Sci.. 372.1727 (2017): 20160232.
Résumé: The costs and benefits of group living often depend on the spatial position of individuals within groups and the ability of individuals to occupy preferred positions. For example, models of predation events for moving prey groups predict higher mortality risk for individuals at the periphery and front of groups. We investigated these predictions in sardine (Sardinella aurita) schools under attack from group hunting sailfish (Istiophorus platypterus) in the open ocean. Sailfish approached sardine schools about equally often from the front and rear, but prior to attack there was a chasing period in which sardines attempted to swim away from the predator. Consequently, all sailfish attacks were directed at the rear and peripheral positions of the school, resulting in higher predation risk for individuals at these positions. During attacks, sailfish slash at sardines with their bill causing prey injury including scale removal and tissue damage. Sardines injured in previous attacks were more often found in the rear half of the school than in the front half. Moreover, injured fish had lower tail-beat frequencies and lagged behind uninjured fish. Injuries inflicted by sailfish bills may, therefore, hinder prey swimming speed and drive spatial sorting in prey schools through passive self-assortment. We found only partial support for the theoretical predictions from current predator-prey models, highlighting the importance of incorporating more realistic predator-prey dynamics into these models. This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
|
|