Accueil | << 1 >> |
![]() |
Batsleer, J., Marchal, P., Vaz, S., Vermard, V., Rijnsdorp, A. D., & Poos, J. J. (2018). Exploring habitat credits to manage the benthic impact in a mixed fishery. Mar. Ecol.-Prog. Ser., 586, 167–179.
Résumé: The performance of a combined catch quota and habitat credit system was explored to manage the sustainable exploitation of a mix of demersal fish species and reduce the benthic impacts of bottom trawl fisheries using a dynamic state variable model approach. The model was parameterised for the Eastern English Channel demersal mixed fishery using otter trawls or dredges. Target species differed in their association with habitat types. Restricting catch quota for plaice and cod had a limited effect on benthic impact, except when reduced to very low values, forcing the vessels to stay in port. Quota management had a minimal influence on fishing behaviour and hence resulted in a minimal reduction of benthic impact. Habitat credits may reduce the benthic impacts of the trawl fisheries at a minimal loss of landings and revenue, as vessels are still able to reallocate their effort to less vulnerable fishing grounds, while allowing the fishery to catch their catch quota and maintain their revenue. Only if they are reduced to extremely low levels can habitat credits potentially constrain fishing activities to levels that prevent the fisheries from using up the catch quota for the target species.
|
Dobrovolski, R., Loyola, R. D., Guilhaumon, F., Gouveia, S. F., & Diniz, J. A. F. (2013). Global agricultural expansion and carnivore conservation biogeography. Biol. Conserv., 165, 162–170.
Résumé: Global conservation prioritization must address conflicting land uses. We tested for spatial congruence between agricultural expansion in the 21st century and priority areas for carnivore conservation worldwide. We evaluated how including agricultural expansion data in conservation planning reduces such congruence and estimated the consequences of such an approach for the performance of resulting priority area networks. We investigated the correlation between projections of agricultural expansion and the solutions of global spatial prioritizations for carnivore conservation through the implementation of different goals: (1) purely maximizing species representation and (2) representing species while avoiding sites under high pressure for agriculture expansion. We also evaluated the performance of conservation solutions based on species' representation and their spatial congruence with established global prioritization schemes. Priority areas for carnivore conservation were spatially correlated with future agricultural distribution and were more similar to global conservation schemes with high vulnerability. Incorporating future agricultural expansion in the site selection process substantially reduced spatial correlation with agriculture, resulting in a spatial solution more similar to global conservation schemes with low vulnerability. Accounting for agricultural expansion resulted in a lower representation of species, as the average proportion of the range represented reduced from 58% to 32%. We propose that priorities for carnivore conservation could be integrated into a strategy that concentrates different conservation actions towards areas where they are likely to be more effective regarding agricultural expansion. (C) 2013 Elsevier Ltd. All rights reserved.
Mots-Clés: Agriculture; Global biodiversity conservation priorities; Image; Mammal; Spatial prioritization; Zonation; biodiversity; biodiversity conservation; conservation; conserving; extinction risk; hotspots; human-population density; integrating economic costs; land-use; mammal conservation; prioritization schemes; protected areas
|