Accueil | << 1 >> |
![]() |
Amélineau, F., Grémillet, D., Bonnet, D., Bot, T. L., & Fort, J. (2016). Where to Forage in the Absence of Sea Ice? Bathymetry As a Key Factor for an Arctic Seabird. Plos One, 11(7), e0157764.
Résumé: The earth is warming at an alarming rate, especially in the Arctic, where a marked decline in sea ice cover may have far-ranging consequences for endemic species. Little auks, endemic Arctic seabirds, are key bioindicators as they forage in the marginal ice zone and feed preferentially on lipid-rich Arctic copepods and ice-associated amphipods sensitive to the consequences of global warming. We tested how little auks cope with an ice-free foraging environment during the breeding season. To this end, we took advantage of natural variation in sea ice concentration along the east coast of Greenland. We compared foraging and diving behaviour, chick diet and growth and adult body condition between two years, in the presence versus nearby absence of sea ice in the vicinity of their breeding site. Moreover, we sampled zooplankton at sea when sea ice was absent to evaluate prey location and little auk dietary preferences. Little auks foraged in the same areas both years, irrespective of sea ice presence/concentration, and targeted the shelf break and the continental shelf. We confirmed that breeding little auks showed a clear preference for larger copepod species to feed their chick, but caught smaller copepods and nearly no ice-associated amphipod when sea ice was absent. Nevertheless, these dietary changes had no impact on chick growth and adult body condition. Our findings demonstrate the importance of bathymetry for profitable little auk foraging, whatever the sea-ice conditions. Our investigations, along with recent studies, also confirm more flexibility than previously predicted for this key species in a warming Arctic.
Mots-Clés: Birds; Copepods; Foraging; Predation; Seabirds; Sea ice; Trophic interactions; Zooplankton
|
Arzul, i., Chollet, b., Boyer, s., Bonnet, d., Gaillard, j., Baldi, y., et al. (2013). Contribution to the understanding of the cycle of the protozoan parasite Marteilia refringens. Parasitology, , 1–14.
Résumé: SUMMARY The paramyxean parasite Marteilia refringens infects several bivalve species including European flat oysters Ostrea edulis and Mediterranean mussels Mytilus galloprovincialis. Sequence polymorphism allowed definition of three parasite types ‘M’, ‘O’ and ‘C’ preferably detected in oysters, mussels and cockles respectively. Transmission of the infection from infected bivalves to copepods Paracartia grani could be experimentally achieved but assays from copepods to bivalves failed. In order to contribute to the elucidation of the M. refringens life cycle, the dynamics of the infection was investigated in O. edulis, M. galloprovincialis and zooplankton over one year in Diana lagoon, Corsica (France). Flat oysters appeared non-infected while mussels were infected part of the year, showing highest prevalence in summertime. The parasite was detected by PCR in zooplankton particularly after the peak of prevalence in mussels. Several zooplanktonic groups including copepods, Cladocera, Appendicularia, Chaetognatha and Polychaeta appeared PCR positive. However, only the copepod species Paracartia latisetosa showed positive signal by in situ hybridization. Small parasite cells were observed in gonadal tissues of female copepods demonstrating for the first time that a copepod species other than P. grani can be infected with M. refringens. Molecular characterization of the parasite infecting mussels and zooplankton allowed the distinguishing of three Marteilia types in the lagoon.
Mots-Clés: ,; , parasite life cycle, zooplankton; bivalves, copepods,
|
Benedetti, F., Guilhaumon, F., Adloff, F., & Ayata, S. - D. (2018). Investigating uncertainties in zooplankton composition shifts under climate change scenarios in the Mediterranean Sea. Ecography, 41(2), 345–360.
Résumé: Ensemble niche modelling has become a common framework to predict changes in assemblages composition under climate change scenarios. The amount of uncertainty generated by the different components of this framework has rarely been assessed. In the marine realm forecasts have usually focused on taxa representing the top of the marine food-web, thus overlooking their basal component: the plankton. Calibrating environmental niche models at the global scale, we modelled the habitat suitability of 106 copepod species and estimated the dissimilarity between present and future zooplanktonic assemblages in the surface Mediterranean Sea. We identified the patterns (species replacement versus nestedness) driving the predicted dissimilarity, and quantified the relative contributions of different uncertainty sources: environmental niche models, greenhouse gas emission scenarios, circulation model configurations and species prevalence. Our results confirm that the choice of the niche modelling method is the greatest source of uncertainty in habitat suitability projections. Presence-only and presence-absence methods provided different visions of the niches, which subsequently lead to different future scenarios of biodiversity changes. Nestedness with decline in species richness is the pattern driving dissimilarity between present and future copepod assemblages. Our projections contrast with those reported for higher trophic levels, suggesting that different components of the pelagic food-web may respond discordantly to future climatic changes.
|
Benedetti, F., Vogt, M., Righetti, D., Guilhaumon, F., & Ayata, S. - D. (2018). Do functional groups of planktonic copepods differ in their ecological niches? J. Biogeogr., 45(3), 604–616.
Résumé: Aim: To assess the degree of overlap between the environmental niches of marine planktonic copepods and test if the distribution of copepod functional groups differs across environmental gradients. Location: The Mediterranean Sea. Methods: Functional groups were defined based on clustering of functional traits in 106 marine copepod species using a multivariate ordination analysis. Functional traits included maximum body length, feeding mode, spawning strategy and trophic group. Simultaneously, the global distribution of the species was used to model their environmental niches with six environmental variables. For each of these predictors, four niche parameters were derived from the univariate response curve of each species to summarise their environmental preferences and ordinate the species in niche space through a PCA. Finally, the differences in the position in niche space of functional groups were tested with variance analysis. Results: We identified seven copepod functional groups with different distributions along the environmental gradients covered by our study. While carnivorous functional groups were affiliated with oligotrophic and tropical conditions, large and small current-feeding herbivores are associated with colder, more seasonally varying and productive conditions. Small cruising detritivores and other small current-feeding herbivores were not affiliated with specific conditions as their constituting species were scattered in niche space. Main conclusions: Since copepod functional groups occupy distinct ecological niches, ecosystem processes related to these groups are expected to vary across environmental gradients. Conditions favouring large current-feeding herbivores should allow for enhanced fluxes of energy and nutrients through Mediterranean Sea ecosystems, while such fluxes should be weakened where large carnivores and small passive ambush-feeding copepods dominate. Our study supports the development of trait-based zooplankton functional groups in marine ecosystem models.
|
Hussain, M. B., Laabir, M., & Yahia, M. N. D. (2020). A novel index based on planktonic copepod reproductive traits as a tool for marine ecotoxicology studies. Sci. Total Environ., 727, 138621.
Résumé: Copepods are excellent bioindicators of climate change and ecosystem pollution in anthropized coastal waters. This work reviewed the results of previous studies examining changes in egg production rate (EPR), hatching success (HS), and nauplius survival rate (NSR) in natural conditions and in the presence of pollutants, including heavy metals and organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) and persistent organic pollutants (POPs). At high concentrations, cadmium and silver induce an increase in EPR in the copepods Acartia tonsa and Acartia hudsonica, while exposure to mercury decreases EPR in adults by 50%. All three metals affect HS, with mercury inducing a stronger effect than cadmium and silver. Cadmium affects reproductive traits in Centropages ponticus, decreasing EPR and particularly HS. Furthermore, copper and chromium at high concentrations induce significant decreases in eggs per female in Notodiaptomus conifer. In terms of organic contaminant and Polycyclic Aromatic Hydrocarbons (PAHs), Eurytemora affinis is reported to be affected by naphthalene, 2-methylnaphthalene, 2,6-dimethylnaphthalene, and 2,3,5-trimethylnaphthalene and can thus be used in ecotoxicity studies, but only if the exposure time is high. Acartia tonsa shows significant reductions in EPR and HS at high concentrations of fluoranthene, phenanthrene, and pyrene. However, the response to Persistent Organic Pollutants (POPs) such as pentachlorophenol (PCP) and 1,2-dichlorobenzene (DCB) differs. In E. affinis, EPR increases with DCB, but HS falls to <1%. EPR increases when the species is exposed overnight, but HS remains low in the presence of DCB. Based on these results, we developed a novel copepod reproductive trait index (CRT-Index) for use in marine ecotoxicology surveys and tested in some simple cases. We show that copepods are good candidates as models for ecotoxicology studies, in particular using reproductive traits (EPR, HS and NSR) because of their sensitivity to a wide range or pollutants. (C) 2020 Elsevier B.V. All rights reserved.
|