|
Gueroun, S. K. M., Molinero, J. C., Piraino, S., & Daly Yahia, M. N. (2020). Population dynamics and predatory impact of the alien jellyfish Aurelia solida (Cnidaria, Scyphozoa) in the Bizerte Lagoon (southwestern Mediterranean Sea). Mediterr. Mar. Sci., 21(1), 22–35.
Résumé: Understanding the life cycle strategies and predatory impact of alien jellyfish species is critical to mitigate the impact that these organisms may have on local populations, biodiversity, and ultimately on the functioning of food webs. In the Mediterranean Sea, little is known about the dynamics of alien jellyfish, despite this biodiversity hotspot being one of the most threatened areas by increasing numbers of alien jellyfish. Here, we investigated the population dynamics and predatory impact of a non-indigenous scyphomedusa, Aurelia solida Browne 1905, in the Bizerte Lagoon, Tunisia. The study was based on bimonthly surveys performed over two consecutive years, from November 2012 to August 2014. Field observations showed that the planktonic phase of A. solida occurs from winter to early summer. Prey composition was investigated by means of gut content and field zooplankton analyses. Calanoid copepods, mollusc larvae, and larvaceans represented the main food items of A. solida. To determine the jellyfish feeding rate and their predatory impact on zooplankton populations, the digestion time for zooplankton prey was assessed at three different temperatures: 13, 18, and 23 degrees C in laboratory conditions, corresponding to the average range of temperatures encountered by A. solida in the Bizerte Lagoon. We found that A. solida consumed 0.5-22.5% and 0.02-37.3% of the daily zooplankton standing stock in 2013 and 2014, respectively. These results indicate a non-negligible but restricted seasonal grazing impact on some mesozooplankton groups, explained by the relatively short lifespan of the medusa stage (5-6 months).
|
|
|
Ramirez-Romero, E., Molinero, J. C., Paulsen, M., Javidpour, J., Clemmesen, C., & Sommer, U. (2018). Quantifying top-down control and ecological traits of the scyphozoan Aurelia aurita through a dynamic plankton model. J. Plankton Res., 40(6), 678–692.
Résumé: Aurelia aurita (Linneaus, 1758) is a cosmopolitan scyphozoan, probably the most investigated jellyfish in temperate and highly productive coastal ecosystems. Despite a prominent top-down control in plankton food webs, a mechanistic understanding of A. aurita population dynamics and trophic interactions has been barely addressed. Here we develop a food web dynamic model to assess A. aurita role in the seasonal plankton dynamics of the Kiel Fjord, southwestern Baltic Sea. The model couples low trophic level dynamics, based on a classical Nutrient Phytoplankton Zooplankton Detritus (NPZD) model, to a stage-resolved copepod model (referencing Pseudocalanus sp.) and a jellyfish model (A. aurita ephyra and medusa) as consumers and predators, respectively. Simulations showed the relevance of high abundances of A. aurita, which appear related with warm winter temperatures, promoting a shift from a copepod-dominated food web to a ciliate and medusa dominated one. The model captured the intraspecific competition triggered by the medusae abundance and characterized by a negative relationship between population density and individual size/weight. Our results provide a mechanistic understanding of an emergent trait such as size shaping the food web functioning, driving predation rates and population dynamics of A. aurita, driving its sexual reproductive strategy at the end of the pelagic phase.
|
|