Accueil | << 1 2 3 4 5 6 7 8 9 >> |
![]() |
Benedetti, F., Vogt, M., Righetti, D., Guilhaumon, F., & Ayata, S. - D. (2018). Do functional groups of planktonic copepods differ in their ecological niches? J. Biogeogr., 45(3), 604–616.
Résumé: Aim: To assess the degree of overlap between the environmental niches of marine planktonic copepods and test if the distribution of copepod functional groups differs across environmental gradients. Location: The Mediterranean Sea. Methods: Functional groups were defined based on clustering of functional traits in 106 marine copepod species using a multivariate ordination analysis. Functional traits included maximum body length, feeding mode, spawning strategy and trophic group. Simultaneously, the global distribution of the species was used to model their environmental niches with six environmental variables. For each of these predictors, four niche parameters were derived from the univariate response curve of each species to summarise their environmental preferences and ordinate the species in niche space through a PCA. Finally, the differences in the position in niche space of functional groups were tested with variance analysis. Results: We identified seven copepod functional groups with different distributions along the environmental gradients covered by our study. While carnivorous functional groups were affiliated with oligotrophic and tropical conditions, large and small current-feeding herbivores are associated with colder, more seasonally varying and productive conditions. Small cruising detritivores and other small current-feeding herbivores were not affiliated with specific conditions as their constituting species were scattered in niche space. Main conclusions: Since copepod functional groups occupy distinct ecological niches, ecosystem processes related to these groups are expected to vary across environmental gradients. Conditions favouring large current-feeding herbivores should allow for enhanced fluxes of energy and nutrients through Mediterranean Sea ecosystems, while such fluxes should be weakened where large carnivores and small passive ambush-feeding copepods dominate. Our study supports the development of trait-based zooplankton functional groups in marine ecosystem models.
|
Escalas, A., Catherine, A., Maloufi, S., Cellamare, M., Hamlaoui, S., Yepremian, C., et al. (2019). Drivers and ecological consequences of dominance in periurban phytoplankton communities using networks approaches. Water Res., 163, Unsp-114893.
Résumé: Evaluating the causes and consequences of dominance by a limited number of taxa in phytoplankton communities is of huge importance in the current context of increasing anthropogenic pressures on natural ecosystems. This is of particular concern in densely populated urban areas where usages and impacts of human populations on water ecosystems are strongly interconnected. Microbial biodiversity is commonly used as a bioindicator of environmental quality and ecosystem functioning, but there are few studies at the regional scale that integrate the drivers of dominance in phytoplankton communities and their consequences on the structure and functioning of these communities. Here, we studied the causes and consequences of phytoplankton dominance in 50 environmentally contrasted waterbodies, sampled over four summer campaigns in the highly-populated Ile-de-France region (IDF). Phytoplankton dominance was observed in 32-52% of the communities and most cases were attributed to Chlorophyta (35.5-40.6% of cases) and Cyanobacteria (30.3-36.5%). The best predictors of dominance were identified using multinomial logistic regression and included waterbody features (surface, depth and connection to the hydrological network) and water column characteristics (total N, TN:TP ratio, water temperature and stratification). The consequences of dominance were dependent on the identity of the dominant organisms and included modifications of biological attributes (richness, cohesion) and functioning (biomass, RUE) of phytoplankton communities. We constructed co-occurrence networks using high resolution phytoplankton biomass and demonstrated that networks under dominance by Chlorophyta and Cyanobacteria exhibited significantly different structure compared with networks without dominance. Furthermore, dominance by Cyanobacteria was associated with more profound network modifications (e.g. cohesion, size, density, efficiency and proportion of negative links), suggesting a stronger disruption of the structure and functioning of phytoplankton communities in the conditions in which this group dominates. Finally, we provide a synthesis on the relationships between environmental drivers, dominance status, community attributes and network structure. (C) 2019 Elsevier Ltd. All rights reserved.
|
de Fouw, J., Govers, L. L., van de Koppel, J., van Belzen, J., Dorigo, W., Cheikh, M. A. S., et al. (2016). Drought, Mutualism Breakdown, and Landscape-Scale Degradation of Seagrass Beds. Curr. Biol., 26(8), 1051–1056.
Résumé: In many marine ecosystems, biodiversity critically depends on foundation species such as corals and seagrasses that engage in mutualistic interactions [1-3]. Concerns grow that environmental disruption of marine mutualisms exacerbates ecosystem degradation, with breakdown of the obligate coral mutualism (“coral bleaching”) being an iconic example [2, 4, 5]. However, as these mutualisms are mostly facultative rather than obligate, it remains unclear whether mutualism breakdown is a common risk in marine ecosystems, and thus a potential accelerator of ecosystem degradation. Here, we provide evidence that. drought triggered landscape-scale seagrass degradation and show the consequent failure of a facultative mutualistic feedback between seagrass and sulfide-consuming lucinid bivalves that in turn appeared to exacerbate the observed collapse. Local climate and remote sensing analyses revealed seagrass collapse after a summer with intense low-tide drought stress. Potential analysis a novel approach to detect feedback-mediated state shifts-revealed two attractors (healthy and degraded states) during the collapse, suggesting that the drought disrupted internal feedbacks to cause abrupt, patch-wise degradation. Field measurements comparing degraded patches that were healthy before the collapse with patches that remained healthy demonstrated that bivalves declined dramatically in degrading patches with associated high sediment sulfide concentrations, confirming the breakdown of the mutualistic seagrass-lucinid feedback. Our findings indicate that drought triggered mutualism breakdown, resulting in toxic sulfide concentrations that aggravated seagrass degradation. We conclude that external disturbances can cause sudden breakdown of facultative marine mutualistic feedbacks. As this may amplify ecosystem degradation, we suggest including mutualisms in marine conservation and restoration approaches.
|
Briscoe, D. K., Hobday, A. J., Carlisle, A., Scales, K., Eveson, J. P., Arrizabalaga, H., et al. (2017). Ecological bridges and barriers in pelagic ecosystems. Deep-Sea Res. Part II-Top. Stud. Oceanogr., 140, 182–192.
Résumé: Many highly mobile species are known to use persistent pathways or corridors to move between habitat patches in which conditions are favorable for particular activities, such as breeding or foraging. In the marine realm, environmental variability can lead to the development of temporary periods of anomalous oceanographic conditions that can connect individuals to areas of habitat outside a population's usual range, or alternatively, restrict individuals from areas usually within their range, thus acting as ecological bridges or ecological barriers. These temporary features can result in novel or irregular trophic interactions and changes in population spatial dynamics, and, therefore, may have significant implications for management of marine ecosystems. Here, we provide evidence of ecological bridges and barriers in different ocean regions, drawing upon five case studies in which particular oceanographic conditions have facilitated or restricted the movements of individuals from highly migratory species. We discuss the potential population-level significance of ecological bridges and barriers, with respect to the life history characteristics of different species, and inter- and intra-population variability in habitat use. Finally, we summarize the persistence of bridge dynamics with time, our ability to monitor bridges and barriers in a changing climate, and implications for forecasting future climate mediated ecosystem change.
Mots-Clés: arctic marine mammals; atlantic bluefin tuna; Billfish; Brazilian episode; climate-change; el-nino; interannual variation; Marine mammal; marlin makaira-nigricans; Migration corridors; Oceanographic features; population connectivity; satellite archival tags; sea-turtles; site fidelity; species distribution; thunnus-maccoyii; Tuna
|
Albo-Puigserver, M., Munoz, A., Navarro, J., Coll, M., Pethybridge, H., Sanchez, S., et al. (2017). Ecological energetics of forage fish from the Mediterranean Sea: Seasonal dynamics and interspecific differences. Deep-Sea Res. Part II-Top. Stud. Oceanogr., 140, 74–82.
Résumé: Small and medium pelagic fishes play a central role in marine food webs by transferring energy from plankton to top predators. In this study, direct calorimetry was used to analyze the energy density of seven pelagic species collected over four seasons from the western Mediterranean Sea: anchovy Engraulis encrasicolus, sardine Sardina pilchardus, round sardinella Sardinella aurita, horse mackerels Trachurus trachurus and T. mediterraneus, and mackerels Scomber scombrus and S. colias. Inter-specific differences in energy density were linked to spawning period, energy allocation strategies for reproduction and growth, and feeding ecologies. Energy density of each species varied over time, with the exception of S. colitis, likely due to its high energetic requirements related to migration throughout the year. In general, higher energy density was observed in spring for all species, regardless of their breeding strategy, probably as a consequence of the late-winter phytoplankton bloom. These results provide new insights into the temporal availability of energy in the pelagic ecosystem of the Mediterranean Sea, which are pivotal for understanding how the population dynamics of small and medium pelagic fishes and their predators may respond to environmental changes and fishing impacts. In addition, the differences found in energy density between species highlighted the importance of using species specific energy values in ecosystem assessment tools such as bioenergetic and food web models.
|