Accueil | << 1 2 3 4 5 6 7 8 9 10 >> [11–12] |
![]() |
Albo-Puigserver, M., Munoz, A., Navarro, J., Coll, M., Pethybridge, H., Sanchez, S., et al. (2017). Ecological energetics of forage fish from the Mediterranean Sea: Seasonal dynamics and interspecific differences. Deep-Sea Res. Part II-Top. Stud. Oceanogr., 140, 74–82.
Résumé: Small and medium pelagic fishes play a central role in marine food webs by transferring energy from plankton to top predators. In this study, direct calorimetry was used to analyze the energy density of seven pelagic species collected over four seasons from the western Mediterranean Sea: anchovy Engraulis encrasicolus, sardine Sardina pilchardus, round sardinella Sardinella aurita, horse mackerels Trachurus trachurus and T. mediterraneus, and mackerels Scomber scombrus and S. colias. Inter-specific differences in energy density were linked to spawning period, energy allocation strategies for reproduction and growth, and feeding ecologies. Energy density of each species varied over time, with the exception of S. colitis, likely due to its high energetic requirements related to migration throughout the year. In general, higher energy density was observed in spring for all species, regardless of their breeding strategy, probably as a consequence of the late-winter phytoplankton bloom. These results provide new insights into the temporal availability of energy in the pelagic ecosystem of the Mediterranean Sea, which are pivotal for understanding how the population dynamics of small and medium pelagic fishes and their predators may respond to environmental changes and fishing impacts. In addition, the differences found in energy density between species highlighted the importance of using species specific energy values in ecosystem assessment tools such as bioenergetic and food web models.
|
Albouy, C., Delattre, V., Donati, G., Frolicher, T. L., Albouy-Boyer, S., Rufino, M., et al. (2020). Global vulnerability of marine mammals to global warming. Sci Rep, 10(1), 548.
Résumé: Although extinctions due to climate change are still uncommon, they might surpass those caused by habitat loss or overexploitation over the next few decades. Among marine megafauna, mammals fulfill key and irreplaceable ecological roles in the ocean, and the collapse of their populations may therefore have irreversible consequences for ecosystem functioning and services. Using a trait-based approach, we assessed the vulnerability of all marine mammals to global warming under high and low greenhouse gas emission scenarios for the middle and the end of the 21st century. We showed that the North Pacific Ocean, the Greenland Sea and the Barents Sea host the species that are most vulnerable to global warming. Future conservation plans should therefore focus on these regions, where there are long histories of overexploitation and there are high levels of current threats to marine mammals. Among the most vulnerable marine mammals were several threatened species, such as the North Pacific right whale (Eubalaena japonica) and the dugong (Dugong dugon), that displayed unique combinations of functional traits. Beyond species loss, we showed that the potential extinctions of the marine mammals that were most vulnerable to global warming might induce a disproportionate loss of functional diversity, which may have profound impacts on the future functioning of marine ecosystems worldwide.
|
Alfonso, S., Gesto, M., & Sadoul, B. (2020). Temperature increase and its effects on fish stress physiology in the context of global warming. J. Fish Biol., .
Résumé: The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1-4 degrees C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming.
|
Andrello, M., Guilhaumon, F., Albouy, C., Parravicini, V., Scholtens, J., Verley, P., et al. (2017). Global mismatch between fishing dependency and larval supply from marine reserves. Nat. Commun., 8, 16039.
Résumé: Marine reserves are viewed as flagship tools to protect exploited species and to contribute to the effective management of coastal fisheries. Yet, the extent to which marine reserves are globally interconnected and able to effectively seed areas, where fisheries are most critical for food and livelihood security is largely unknown. Using a hydrodynamic model of larval dispersal, we predict that most marine reserves are not interconnected by currents and that their potential benefits to fishing areas are presently limited, since countries with high dependency on coastal fisheries receive very little larval supply from marine reserves. This global mismatch could be reversed, however, by placing new marine reserves in areas sufficiently remote to minimize social and economic costs but sufficiently connected through sea currents to seed the most exploited fisheries and endangered ecosystems.
|
Arnaud-Haond, S., Stoeckel, S., & Bailleul, D. (2020). New insights into the population genetics of partially clonal organisms: When seagrass data meet theoretical expectations. Mol. Ecol., 29(17), 3248–3260.
Résumé: Seagrass meadows are among the most important coastal ecosystems in terms of both spatial extent and ecosystem services, but they are also declining worldwide. Understanding the drivers of seagrass meadow dynamics is essential for designing sound management, conservation and restoration strategies. However, poor knowledge of the effect of clonality on the population genetics of natural populations severely limits our understanding of the dynamics and connectivity of meadows. Recent modelling approaches have described the expected distributions of genotypic and genetic descriptors under increasing clonal rates, which may help us better understand and interpret population genetics data obtained for partial asexuals. Here, in the light of these recent theoretical developments, we revisited population genetics data for 165 meadows of four seagrass species. Contrasting shoot lifespan and rhizome turnover led to the prediction that the influence of asexual reproduction would increase along a gradient fromZostera noltiitoZostera marina, Cymodocea nodosaandPosidonia oceanica, with increasing departure from Hardy-Weinberg equilibrium (F-is), mostly towards heterozygote excess, and decreasing genotypic richness (R). This meta-analysis provides a nested validation of this hypothesis at both the species and meadow scales through a significant relationship betweenF(is)andRwithin each species. By empirically demonstrating the theoretical expectations derived from recent modelling approaches, this work calls for the use of Hardy-Weinberg equilibrium (F-is) rather than only the strongly sampling-sensitiveRto assess the importance of clonal reproduction (c), at least when the impact of selfing onF(is)can be neglected. The results also emphasize the need to revise our appraisal of the extent of clonality and its influence on the dynamics, connectivity and evolutionary trajectory of partial asexuals in general, including in seagrass meadows, to develop the most accurate management strategies.
|