Albo-Puigserver, M., Navarro, J., Coll, M., Layman, C. A., & Palomera, I. (2016). Trophic structure of pelagic species in the northwestern Mediterranean Sea. J. Appl. Dev. Psychol., 47, 27–35.
Résumé: Ecological knowledge of food web interactions within pelagic marine communities is often limited, impairing our capabilities to manage these ecologically and economically important marine fish species. Here we used stable isotope analyses to investigate trophic interactions in the pelagic ecosystem of the northwestern Mediterranean Sea during 2012 and 2013. Our results suggest that European sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, are consumers located at relatively low levels of the pelagic food web. Unexpectedly, the round sardinella, Sardinella aurita, appeared to be located at a higher trophic level than the other small pelagic fish species, although previous studies found similarity in their diets. Isotope data suggested that trophic niches of species within the genera Trachurus spp. and Scomber spp., were distinct. Atlantic bonito Sarda sarda, European hake Merluccius merluccius and European squid Loligo vulgaris, appeared to feed at higher trophic levels than other species. Despite some intraspecific seasonal variability for some species, community trophic structure appeared relatively stable through the year. These data provide an important step for developing models of food web dynamics in the northwestern Mediterranean Sea. (C) 2016 Elsevier B.V. All rights reserved.
|
Arnaud-Haond, S., van den Beld, I. M. J., Becheler, R., Orejas, C., Menot, L., Frank, N., et al. (2017). Two “pillars” of cold-water coral reefs along Atlantic European margins: Prevalent association of Madrepora oculata with Lophelia pertusa, from reef to colony scale. Deep-Sea Res. Part II-Top. Stud. Oceanogr., 145, 110–119.
Résumé: The scleractinian coral Lophelia pertusa has been the focus of deep-sea research since the recognition of the vast extent of coral reefs in North Atlantic waters two decades ago, long after their existence was mentioned by fishermen. These reefs where shown to provide habitat, concentrate biomass and act as feeding or nursery grounds for many species, including those targeted by commercial fisheries. Thus, the attention given to this cold-water coral (CWC) species from researchers and the wider public has increased. Consequently, new research programs triggered research to determine the full extent of the corals geographic distribution and ecological dynamics of “Lophelia reefs”. The present study is based on a systematic standardised sampling design to analyze the distribution and coverage of CWC reefs along European margins from the Bay of Biscay to Iceland. Based on Remotely Operated Vehicle (ROV) image analysis, we report an almost systematic occurrence of Madrepora oculata in association with L. pertusa with similar abundances of both species within explored reefs, despite a tendency of increased abundance of L. pertusa compared to M. oculata toward higher latitudes. This systematic association occasionally reached the colony scale, with “twin” colonies of both species often observed growing next to each other when isolated structures were occurring offireefs. Finally, several “false chimaera” were observed within reefs, confirming that colonial structures can be “coral bushes” formed by an accumulation of multiple colonies even at the inter-specific scale, with no need for self-recognition mechanisms. Thus, we underline the importance of the hitherto underexplored M. oculata in the Eastern Atlantic, reestablishing a more balanced view that both species and their yet unknown interactions are required to better elucidate the ecology, dynamics and fate of European CWC reefs in a changing environment.
|
BRIND'AMOUR, A., LAFFARGUE, P., MORIN, J., VAZ, S., FOVEAU, A., & LE BRIS, H. (2014). Morphospecies and taxonomic sufficiency of benthic megafauna in scientific bottom trawl surveys. Continental Shelf Research, 72, 1–9.
Résumé: Scientific fisheries surveys routinely identify a large diversity of commercial and non-commercial benthic megainvertebrates that could provide useful information for Marine Strategy Framework Directive (MSFD) descriptors. Species is obviously the basic taxonomic level to which most ecological studies and theories refer. Identification at this level of organization is indeed always preferred over any other taxonomic level. Nevertheless, aggregation of species to higher taxonomic levels may be unavoidable sometimes, since errors of identification are known or suspected to occur in many surveys. Using analyses of taxonomic sufficiency (identification of organisms at various taxonomic resolutions) and groups of morphospecies (taxa identified easily by non-experts on the basis of evident morphological traits), this study aims to quantify the loss of ecological information incurred by partial identification of benthic megafauna in bottom trawl surveys in order to put such data to good use. The analyses were conducted on five scientific surveys representing a large range of geographical areas (from 150 km2 to 150 000 km2) and environmental conditions. Results show that genus, family and, particularly, morphospecies are good surrogates for species identification in community analyses. We suggest that bottom trawl surveys can provide reliable megafauna data that may usefully complete those obtained by grab surveys. The use of morphospecies could lead to new strategies, combining different datasets to provide indicators for MSFD descriptors (e.g. D6).
|
Chouvelon, T., Brach-Papa, C., Auger, D., Bodin, N., Bruzac, S., Crochet, S., et al. (2017). Chemical contaminants (trace metals, persistent organic pollutants) in albacore tuna from western Indian and south-eastern Atlantic Oceans: Trophic influence and potential as tracers of populations. Sci. Total Environ., 596, 481–495.
Résumé: Albacore tuna (Thunnus alalunga) is a highly commercial fish species harvested in the world's Oceans. Identifying the potential links between populations is one of the key tools that can improve the current management across fisheries areas. In addition to characterising populations' contamination state, chemical compounds can help refine foraging areas, individual flows and populations' structure, especially when combined with other intrinsic biogeochemical (trophic) markers such as carbon and nitrogen stable isotopes. This study investigated the bioaccumulation of seven selected trace metals – chromium, nickel, copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg) and lead – in the muscle of 443 albacore tunas, collected over two seasons and/or years in the western Indian Ocean (WIO: Reunion Island and Seychelles) and in the south-eastern Atlantic Ocean (SEAO: South Africa). The main factor that explained metal concentration variability was the geographic origin of fish, rather than the size and the sex of individuals, or the season/year of sampling. The elements Cu, Zn, Cd and Hg indicated a segregation of the geographic groups most clearly. For similar sized-individuals, tunas from SEAO had significantly higher concentrations in Cu, Zn and Cd, but lower Hg concentrations than those from WIO. Information inferred from the analysis of trophic markers (delta C-13, delta N-15) and selected persistent organic pollutants, as well as information on stomach contents, corroborated the geographical differences obtained by trace metals. It also highlighted the influence of trophic ecology on metal bioaccumulation. Finally, this study evidenced the potential of metals and chemical contaminants in general as tracers, by segregating groups of individuals using different food webs or habitats, to better understand spatial connectivity at the population scale. Limited flows of individuals between the SEAO and the WIO are suggested. Albacore as predatory fish also provided some information on environmental and food web chemical contamination in the different study areas. (C) 2017 Elsevier B.V. All rights reserved.
|
Lezama-Ochoa, A., Boyra, G., Goñi, N., Arrizabalaga, H., & Bertrand, A. (2010). Investigating relationships between albacore tuna (Thunnus alalunga) CPUE and prey distribution in the Bay of Biscay. Progress In Oceanography, 86, 105–114.
|