Accueil | << 1 >> |
![]() |
Lefevre, S., Domenici, P., & McKenzie, D. J. (2014). Swimming in air-breathing fishes. Journal of Fish Biology, 84(3), 661–681.
Résumé: Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise.
|
McKenzie, D. J., Belao, T. C., Killen, S. S., & Rantin, F. T. (2015). To boldly gulp: standard metabolic rate and boldness have context-dependent influences on risk-taking to breathe air in a catfish. J. Exp. Biol., 218(23), 3762–3770.
Résumé: The African sharptooth catfish Clarias gariepinus has bimodal respiration, it has a suprabranchial air-breathing organ alongside substantial gills. We used automated bimodal respirometry to reveal that undisturbed juvenile catfish (N=29) breathed air continuously in normoxia, with a marked diurnal cycle. Air breathing and routine metabolic rate (RMR) increased in darkness when, in the wild, this nocturnal predator forages. Aquatic hypoxia (20% air saturation) greatly increased overall reliance on air breathing. We investigated whether two measures of risk taking to breathe air, namely absolute rates of aerial O-2 uptake ((M) over dotO(2), air) and the percentage of RMR obtained from air (% (M) over dotO(2), air), were influenced by individual standard metabolic rate (SMR) and boldness. In particular, whether any influence varied with resource availability (normoxia versus hypoxia) or relative fear of predation (day versus night). Individual SMR, derived from respirometry, had an overall positive influence on (M) over dotO(2), air across all contexts but a positive influence on % (M) over dotO(2), air only in hypoxia. Thus, a pervasive effect of SMR on air breathing became most acute in hypoxia, when individuals with higher O-2 demand took proportionally more risks. Boldness was estimated as time required to resume air breathing after a fearful stimulus in daylight normoxia (T-res). Although T-res had no overall influence on (M) over dotO(2), air or % (M) over dotO(2), air, there was a negative relationship between Tres and % (M) over dotO(2), air in daylight, in normoxia and hypoxia. There were two Tres response groups, 'bold' phenotypes with Tres below 75 min (N= 13) which, in daylight, breathed proportionally more air than 'shy' phenotypes with Tres above 115 min (N= 16). Therefore, individual boldness influenced air breathing when fear of predation was high. Thus, individual energy demand and personality did not have parallel influences on the emergent tendency to take risks to obtain a resource; their influences varied in strength with context.
Mots-Clés: african catfish; animal personality; Bimodal respiration; clarias-gariepinus; ecological consequences; Energy metabolism; european sea bass; Hypoxia; individual variation; oncorhynchus-mykiss; Personality; personality-traits; predation risk; Respiratory partitioning; Risk-taking; wild-type zebrafish
|