Accueil | [1–10] << 11 12 13 14 15 16 17 >> |
![]() |
Le Mézo, P., Lefort, S., Séférian, R., Aumont, O., Maury, O., Murtugudde, R., et al. (2016). Natural variability of marine ecosystems inferred from a coupled climate to ecosystem simulation. Journal of Marine Systems, 153, 55–66.
Résumé: This modeling study analyzes the simulated natural variability of pelagic ecosystems in the North Atlantic and North Pacific. Our model system includes a global Earth System Model (IPSL-CM5A-LR), the biogeochemical model PISCES and the ecosystem model APECOSM that simulates upper trophic level organisms using a size-based approach and three interactive pelagic communities (epipelagic, migratory and mesopelagic). Analyzing an idealized (e.g., no anthropogenic forcing) 300-yr long pre-industrial simulation, we find that low and high frequency variability is dominant for the large and small organisms, respectively. Our model shows that the size-range exhibiting the largest variability at a given frequency, defined as the resonant range, also depends on the community. At a given frequency, the resonant range of the epipelagic community includes larger organisms than that of the migratory community and similarly, the latter includes larger organisms than the resonant range of the mesopelagic community. This study shows that the simulated temporal variability of marine pelagic organisms' abundance is not only influenced by natural climate fluctuations but also by the structure of the pelagic community. As a consequence, the size- and community-dependent response of marine ecosystems to climate variability could impact the sustainability of fisheries in a warming world.
Mots-Clés: Fourier transform; North Atlantic; North Pacific; Pelagic environment; Size; Trophic levels; Variability
|
Puerta, P., Johnson, C., Carreiro-Silva, M., Henry, L. - A., Kenchington, E., Morato, T., et al. (2020). Influence of Water Masses on the Biodiversity and Biogeography of Deep-Sea Benthic Ecosystems in the North Atlantic. Front. Mar. Sci., 7, 239.
Résumé: Circulation patterns in the North Atlantic Ocean have changed and re-organized multiple times over millions of years, influencing the biodiversity, distribution, and connectivity patterns of deep-sea species and ecosystems. In this study, we review the effects of the water mass properties (temperature, salinity, food supply, carbonate chemistry, and oxygen) on deep-sea benthic megafauna (from species to community level) and discussed in future scenarios of climate change. We focus on the key oceanic controls on deep-sea megafauna biodiversity and biogeography patterns. We place particular attention on cold-water corals and sponges, as these are ecosystem-engineering organisms that constitute vulnerable marine ecosystems (VME) with high associated biodiversity. Besides documenting the current state of the knowledge on this topic, a future scenario for water mass properties in the deep North Atlantic basin was predicted. The pace and severity of climate change in the deep-sea will vary across regions. However, predicted water mass properties showed that all regions in the North Atlantic will be exposed to multiple stressors by 2100, experiencing at least one critical change in water temperature (+2 degrees C), organic carbon fluxes (reduced up to 50%), ocean acidification (pH reduced up to 0.3), aragonite saturation horizon (shoaling above 1000 m) and/or reduction in dissolved oxygen (> 5%). The northernmost regions of the North Atlantic will suffer the greatest impacts. Warmer and more acidic oceans will drastically reduce the suitable habitat for ecosystem-engineers, with severe consequences such as declines in population densities, even compromising their long-term survival, loss of biodiversity and reduced biogeographic distribution that might compromise connectivity at large scales. These effects can be aggravated by reductions in carbon fluxes, particularly in areas where food availability is already limited. Declines in benthic biomass and biodiversity will diminish ecosystem services such as habitat provision, nutrient cycling, etc. This study shows that the deep-sea VME affected by contemporary anthropogenic impacts and with the ongoing climate change impacts are unlikely to withstand additional pressures from more intrusive human activities. This study serves also as a warning to protect these ecosystems through regulations and by tempering the ongoing socio-political drivers for increasing exploitation of marine resources.
Mots-Clés: antarctic intermediate water; biodiversity; biogeography; climate-change impacts; coral lophelia-pertusa; deep-sea; food-supply mechanisms; global habitat suitability; meridional overturning circulation; ne atlantic; North Atlantic; ocean acidification; porcupine seabight; rockall trough margin; vulnerable marine ecosystems; water masses
|
Afandi, I., Talba, S., Benhra, A., Benbrahim, S., Chfiri, R., Labonne, M., et al. (2018). Trace metal distribution in pelagic fish species from the north-west African coast (Morocco). Int Aquat Res, 10(2), 191–205.
Résumé: In the current study, ten elements contents (Fe, Zn, Mn, Cu, Cr, Co, Ni, Cd, Pb and Hg) have been measured in muscle and liver of four pelagic fish species (Engraulis encrasicolus, Sardina pilchardus, Scomber japonicus and Trachurus trachurus) from the north-west African coast (South Atlantic Moroccan coast), collected during summer and autumn seasons (July and December 2013, respectively). Significant differences in metal contents were found between the different species (p < 0.05). Metals levels were also much higher in liver than those recorded in muscle tissues. The concentrations of Fe, Zn, Cd, Co, Cu and Pb were significantly higher in mackerel liver (p < 0.05).While, in muscle, anchovy presents a higher content of Mn, Cu, Cr, Ni and Pb. A high level of cadmium was recorded in liver of the different species which can be attributed to an anthropogenic source (phosphate industry) and to natural sources (upwelling activities). The main concentration of toxic elements (Cd, Pb and Hg) recorded in the four edible muscles of pelagic fish species, under study, were below the established values by the European Commission Regulations and show that their effect on the consumers health can be considered as negligible.
|
Rouyer, T., Bonhommeau, S., Giordano, N., Giordano, F., Ellul, S., Ellul, G., et al. (2020). Tagging Atlantic bluefin tuna from a Mediterranean spawning ground using a purse seiner. Fish Res., 226, 105522.
Résumé: Atlantic bluefin tuna, Thunnus thynnus, is as an emblematic and commercially valuable large pelagic species. In the past ten years, the purse seine fishery in the Mediterranean represents more than 50 % of the catch. Nowadays, purse seines target large fish and operate during the spawning season in the spawning grounds. Electronic tagging has shed a considerable amount of light on the ecology and behaviour of bluefin tuna over the past twenty years. However, such technique has rarely been applied on large bluefin tunas caught by the Mediterranean purse seine fishery despite its major importance. The logistical constraints related to this specific fishery, combined with the timing of migration of the fish and the requirements related to the handling of big fish have made adequate tagging from purse seines complex. Here we detail such an operation, designed to bridge the knowledge gap on the migratory behaviour of tunas targeted by the purse seine fishery. Three large bluefin tunas from the same school were tagged during the fishing operation of a French purse seine, resulting in a different migration pattern than previous deployments. The fish were tagged onboard in less than 2 min and efficiently, avoiding any subsequent mortality. These results contrast with those from tagging operations carried out in the Northwest Mediterranean, which underlies the importance of tagging operations from purse seines to obtain unbiased description of the movements of the eastern Atlantic bluefin tuna stock in the context of its management.
|
McLean, M. J., Mouillot, D., Goascoz, N., Schlaich, I., & Auber, A. (2019). Functional reorganization of marine fish nurseries under climate warming. Glob. Change Biol., 25(2), 660–674.
Résumé: While climate change is rapidly impacting marine species and ecosystems worldwide, the effects of climate warming on coastal fish nurseries have received little attention despite nurseries' fundamental roles in recruitment and population replenishment. Here, we used a 26-year time series (1987-2012) of fish monitoring in the Bay of Somme, a nursery in the Eastern English Channel (EEC), to examine the impacts of environmental and human drivers on the spatial and temporal dynamics of fish functional structure during a warming phase of the Atlantic Multidecadal Oscillation (AMO). We found that the nursery was initially dominated by fishes with r-selected life-history traits such as low trophic level, low age and size at maturity, and small offspring, which are highly sensitive to warming. The AMO, likely superimposed on climate change, induced rapid warming in the late 1990s (over 1 degrees C from 1998 to 2003), leading to functional reorganization of fish communities, with a roughly 80% decline in overall fish abundance and increased dominance by K-selected fishes. Additionally, historical overfishing likely rendered the bay more vulnerable to climatic changes due to increased dominance by fishing-tolerant, yet climatically sensitive species. The drop in fish abundance not only altered fish functional structure within the Bay of Somme, but the EEC was likely impacted, as the EEC has been unable to recover from a regime shift in the late 1990s potentially, in part, due to failed replenishment from the bay. Given the collapse of r-selected fishes, we discuss how the combination of climate cycles and global warming could threaten marine fish nurseries worldwide, as nurseries are often dominated by r-selected species.
Mots-Clés: English Channel; community; ecosystem; fisheries; recruitment; functional traits; in-situ; connectivity; estuarine; climate change; life-history strategies; ecosystem function; life history; english-channel; Atlantic Multidecadal Oscillation; atlantic multidecadal oscillation; fuzzy-logic; r-selection
|