Accueil | << 1 2 3 >> |
![]() |
Ba, A., Chaboud, C., Schmidt, J., Diouf, M., Fall, M., Deme, M., et al. (2019). The potential impact of marine protected areas on the Senegalese sardinella fishery. Ocean Coastal Manage., 169, 239–246.
Résumé: In the early 2000s, Senegal set up several Marine Protected Areas (MPAs) along its coastal zone with the purpose of biodiversity conservation and to support sustainable management of fisheries. However, the impact of MPAs may vary according to the type of fisheries. In Senegal, the sardinella fishery accounts for 70% of total catches. This fishery is of crucial importance for national food security and employment. Given this importance, it is necessary to evaluate the impact of MPAs, often being considered as a tool for fisheries management. An analytical, dynamic and spatial bio-economic model of sardinella fishery, considering fish and fisher migration, has been developed and scenarios over forty years have been analyzed. The results show that the fishery is economically overexploited and that Senegal could lose about 11.6 billion CFA over forty years of exploitation, i.e. 290 million CFA per year. To achieve an optimal level of exploitation, it would be necessary to halve the current fishing capacity. Implementing MPAs for 10, 20 and 30% of the Senegalese exclusive economic zone lead to slight increases in biomass (1%) and rent (5-11%). In addition, spatio-temporal closures can lead to increased exploitation in unclosed areas, due to the absence of enforcement. Achieving target 11 of the Aichi Convention, i.e., 10% of coastal and marine areas protected per country, will have a reserve effect on the resource but also only lead to weak improvements in economic indicators for the Senegalese fishery. Finally, because the sardinella resource is shared among many countries of the Sub-Regional Fisheries Commission (SRFC), a sub-regional cooperation is necessary for a sustainable management.
|
Ba, K., Thiaw, M., Fall, M., Thiam, N., Meissa, B., Jouffre, D., et al. (2018). Long-term fishing impact on the Senegalese coastal demersal resources: diagnosing from stock assessment models. Aquat. Living Resour., 31, 8.
Résumé: For the first time in Senegal, assessments based on both stochastic and deterministic production models were used to draw a global diagnosis of the fishing impact on coastal demersal stocks. Based one national fisheries databases and scientific trawl surveys data: (i) trends in landings since 1971 were examined, (ii) abundance indices of 10 stocks were estimated using linear models fitted to surveys data and commercial catch per unit efforts, and (iii) stock assessments were carried out using pseudo-equilibrium Fox and Pella-Tomlinson models and a Biomass dynamic production model fitted in a Bayesian framework to abundance indices. Most stocks have seen their abundance sharply declining over time. All stocks combined, results of stock assessments suggest a 63% reduction compared to virgin state. Three fifth of demersal stocks are overexploited and excess in fishing effort was estimated until 75% for the worst case. We conclude by suggesting that the fishing of such species must be regulated and an ecosystem approach to fisheries management should be implemented in order to monitor the whole ecosystem.
|
Benazzouz, A., Mordane, S., Orbi, A., Chagdali, M., Hilmi, K., Atillah, A., et al. (2014). An improved coastal upwelling index from sea surface temperature using satellite-based approach : the case of the Canary Current upwelling system. Continental Shelf Research, 81, 38–54.
Résumé: A new methodology to derive an SST-based upwelling index was based on a rigorous spatial analysis of satellite SST fields and their variability, by referring to previous works, from Wooster et al. (1976) to Santos et al. (2011). The data was precautiously processed by considering data quality aspects (including cloud cover) and the best way to derive accurate coastal SST and its offshore reference. The relevance of the developed index was evaluated by comparing its spatial and seasonal consistency against two wind-based indices as well as with the previous SST-based indices, largely superseding these later ones in term of overall quality and spatio-temporal dynamic. Our index adequately describes the spatio-temporal variability of the coastal upwelling intensity in the Canary Current upwelling system and has the advantage of describing complementary aspects of the coastal dynamics of the region that were not covered by Ekman-based indices. The proposed methodology is generic and can be easily applicable to various coastal upwelling systems, especially the four major eastern boundary upwelling ecosystems.
|
Benazzouz, A., Pelegri, J. L., Demarcq, H., Machin, F., Mason, E., Orbi, A., et al. (2014). On the temporal memory of coastal upwelling off NW Africa. J. Geophys. Res.-Oceans, 119(9), 6356–6380.
Résumé: We use a combination of satellite, in situ, and numerical data to provide a comprehensive view of the seasonal coastal upwelling cycle off NW Africa in terms of both wind forcing and sea surface temperature (SST) response. Wind forcing is expressed in terms of both instantaneous (local) and time-integrated (nonlocal) indices, and the ocean response is expressed as the SST difference between coastal and offshore waters. The classical local index, the cross-shore Ekman transport, reproduces reasonably well the time-latitude distribution of SST differences but with significant time lags at latitudes higher than Cape Blanc. Two nonlocal indices are examined. One of them, a cumulative index calculated as the backward averaged Ekman transport that provides the highest correlation with SST differences, reproduces well the timing of the SST differences at all latitudes (except near Cape Blanc). The corresponding time lags are close to zero south of Cape Blanc and range between 2 and 4 months at latitudes between Cape Blanc and the southern Gulf of Cadiz. The results are interpreted based on calculations of spatial and temporal auto and cross correlations for wind forcing and SST differences. At temporal scales of 2-3 weeks, the alongshore advection of alongshore momentum compensates for interfacial friction, allowing the upwelling jet and associated frontal system to remain active. We conclude that the coastal jet plays a key role in maintaining the structure of coastal upwelling, even at times of relaxed winds, by introducing a seasonal memory to the system in accordance with the atmospheric-forcing annual cycle.
|
Brochier, T., Ecoutin, J. M., de Morais, L. T., Kaplan, D. M., & Lae, R. (2013). A multi-agent ecosystem model for studying changes in a tropical estuarine fish assemblage within a marine protected area. Aquatic Living Resources, 26(02), 147–158.
Résumé: As marine protected areas (MPAs) are increasingly being utilised as a tool for fishery management, their impact on the food web needs to be fully understood. However, little is known about the effect of MPAs on fish assemblages, especially in the presence of different life history and ecological traits. Modelling the observed changes in fish population structures may provide a mechanistic understanding of fish assemblage dynamics. In addition, modelling allows a quantitative estimate of MPA spill-over. To achieve this purpose, we adapted an existing ecosystem model, OSMOSE (Object-oriented simulator of marine biodiversity exploitation), to the specific case of the presence of fish with multiple life histories. The adapted model can manage 4 main categories of life history identified in an estuary MPA: fish that (1) spend their entire life cycle locally, (2) are present only as juveniles, (3) enter the area as juveniles and stay permanently except during reproduction periods, which occur outside the estuary, and (4) are present occasionally and for a short time for foraging purposes. To take into account these specific life-history traits, the OSMOSE code was modified. This modelling approach was developed in the context of the Bamboung Bolong MPA, located in a mangrove area in the Sine-Saloum Delta, Senegal. This was the ideal case to develop our approach as there has been scientific monitoring of the fish population structure inside the MPA before fishery closure, providing a reference state, and continuous monitoring since the closure. Ecologically similar species were pooled by trophic traits into 15 groups that represented 97% of the total biomass. Lower trophic levels (LTL) were represented by 6 compartments. The biomass of the model species was calibrated to reproduce the reference situation before fishery closure. Model predictions of fish assemblage changes after fishery closure corresponding to the Bamboung MPA creation scenario were compared to field observations; in most cases the model reproduces observed changes in biomass (at least in direction). We suggest the existence of a “sanctuary effect”, that was not taken into account in the model, this could explain the observed increase in biomass of top predators not reproduced by the model. Finally, the annual MPA fish spill-over was estimated at 11 tons (~33% of the fish biomass) from the model output, mainly due to diffusive effects.
|