|
Govinden, R., Jauhary, R., Filmalter, J., Forget, F., Soria, M., Adam, S., et al. (2012). Movement Behaviour of Skipjack (Katsuwonus Pelamis) and Yellowfin (Thunnus Albacares) Tuna at Anchored Fish Aggregating Devices (FADs) in the Maldives, Investigated by Acoustic Telemetry. Aquatic Living Resources, FirstView.
|
|
|
Capello, M., Deneubourg, J. L., Robert, M., Holland, K. N., Schaefer, K. M., & Dagorn, L. (2016). Population assessment of tropical tuna based on their associative behavior around floating objects. Sci Rep, 6, 36415.
Résumé: Estimating the abundance of pelagic fish species is a challenging task, due to their vast and remote habitat. Despite the development of satellite, archival and acoustic tagging techniques that allow the tracking of marine animals in their natural environments, these technologies have so far been underutilized in developing abundance estimations. We developed a new method for estimating the abundance of tropical tuna that employs these technologies and exploits the aggregative behavior of tuna around floating objects (FADs). We provided estimates of abundance indices based on a simulated set of tagged fish and studied the sensitivity of our method to different association dynamics, FAD numbers, population sizes and heterogeneities of the FAD-array. Taking the case study of yellowfin tuna (Thunnus albacares) acoustically-tagged in Hawaii, we implemented our approach on field data and derived for the first time the ratio between the associated and the total population. With more extensive and long-term monitoring of FAD-associated tunas and good estimates of the numbers of fish at FADs, our method could provide fisheries-independent estimates of populations of tropical tuna. The same approach can be applied to obtain population assessments for any marine and terrestrial species that display associative behavior and from which behavioral data have been acquired using acoustic, archival or satellite tags.
|
|
|
Escalle, L., Murua, H., Amande, J. M., Arregui, I., Chavance, P., Delgado de Molina, A., et al. (2016). Post-capture survival of whale sharks encircled in tuna purse-seine nets: tagging and safe release methods. Aquatic Conserv: Mar. Freshw. Ecosyst., 25(4), 433–447.
Résumé: 1. Whale shark, the world's largest fish, is believed to be particularly vulnerable owing to its biological characteristics (slow growth, late maturation, great longevity) and is listed as Vulnerable by IUCN and included in Appendix II of CITES. 2. Whale sharks are occasionally encircled in tropical tuna purse-seine nets, throughout this global fishery. Although apparent immediate survival rates following encirclement and release have recently been assessed through scientific onboard observer programmes, a more rigorous methodology is still required for studying post-released survival. 3. This work provides a method for applying pop-up satellite tags and reports an enhanced release procedure for whale sharks. The first assessment of survival after release from purse-seine nets involved six whale sharks tagged between May and September 2014 in the eastern tropical Atlantic Ocean. Five tags transmitted data: three popped up as programmed (after 30 days), while two surfaced prematurely (one after 21 and the other after 71 days (programmed to pop off after 30 and 90 days, respectively)) but showed no sign of unusual behaviour. 4. Overall, whale sharks survived at least 21 days (one at least 71 days) after release from purse-seine nets. These observations based on five large individuals (total length > 8 m), suggest that whale sharks have a good chance of survival when released with the proposed method. 5. Additional tagging in this and other oceans, especially of juveniles which may be more sensitive to encirclement and release operations, is essential to further assess whale shark post-release survival rates in tuna purse-seine fisheries. Copyright © 2016 John Wiley & Sons, Ltd.
|
|
|
DRUON, J. - N., FROMENTIN, J. - M., AULANIER, F., & HEIKKONEN, J. (2011). Potential feeding and spawning habitats of Atlantic bluefin tuna in the Mediterranean Sea. Marine Ecology-progress Series, 439, 223–240.
Résumé: Atlantic bluefin tuna Thunnus thynnus (ABFT) is a fish of high market value which has recently become strongly overexploited, notably in the Mediterranean Sea. This area is an essential habitat for ABFT reproduction and growth. We present here an approach for deriving the daily mapping of potential ABFT feeding and spawning habitats based on satellite-derived sea surface temperature (SST) and chl a concentration. The feeding habitat was mainly derived from the simultaneous occurrence of oceanic fronts of temperature and chl a content while the spawning habitat was mostly inferred from the heating of surface waters. Generally, higher chl a contents were found to be preferred for the feeding habitat and a minimum SST value was found for the spawning habitat. Both habitats were defined by the presence of relevant oceanographic features and are therefore potential and functionally-linked habitats. This approach provides, for the first time, a synoptic view of the potential ABFT habitats in the Mediterranean Sea. The model performs well in areas where both satellite data and ABFT observations are available, as 80% of presence data are in the vicinity of potential habitats. The computed monthly, seasonal and annual maps of potential feeding and spawning habitat of ABFT from 2003 to 2009 are in good agreement with current knowledge on ABFT. Overall, the habitat size of ABFT is about 6% of the Mediterranean Sea surface. The results displayed a strong seasonality in habitat size and locations as well as high year-to-year variations (30 to 60%), particularly for the potential spawning habitat, which is key information for evaluating the utility of ABFT Marine Protected Areas in the Mediterranean Sea.
|
|
|
Van Beveren, E., Fromentin, J. - M., Bonhommeau, S., Nieblas, A. - E., Metral, L., Brisset, B., et al. (2017). Predator-prey interactions in the face of management regulations: changes in Mediterranean small pelagic species are not due to increased tuna predation. Can. J. Fish. Aquat. Sci., 74(9), 1422–1430.
Résumé: Recently, the abundance of young Atlantic bluefin tuna (Thunnus thynnus) tripled in the northwestern Mediterranean following effective management measures. We investigated whether its predation on sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) could explain their concurrent size and biomass decline, which caused a fishery crisis. Combining the observed diet composition of bluefin tuna, their modelled daily energy requirements, their population size, and the abundance of prey species in the area, we calculated the proportion of the prey populations that were consumed by bluefin tuna annually over 2011-2013. To assess whether tuna could alter the size structure of the three small pelagic fish populations (anchovy, sardine, and sprat (Sprattus sprattus)), the size distributions of the consumed prey species were compared with those of the wild populations. We estimated that the annual consumption of small pelagic fish by bluefin tuna is less than 2% of the abundance of these populations. Furthermore, size selectivity patterns were not observed. We thus concluded that tuna predation is unlikely to be the main cause of major changes in the small pelagic fish populations from this area.
|
|