Accueil | << 1 2 >> |
![]() |
Amandé, M., Ariz, J., Chassot, E., Molina, A. D. de, Gaertner, D., Murua, H., et al. (2010). Bycatch of the European purse seine tuna fishery in the Atlantic Ocean for the 2003-2007 period. Aquatic Living Resources, 23(4), 353–362.
Résumé: Bycatch of several groups of species and their characteristics are presented for the period 2003 to 2007 for the European purse seine tuna fishery operating in the Atlantic Ocean. Data were collected through French and Spanish observer programmes and represented a total of 27 trips corresponding to 2.9% coverage. Bycatch is defined as non-targeted species and small or damaged target species. Bycatch species composition, main species length, sex ratio and the fate of the most common species are presented first. Stratified ratios relative to landings of major commercial tunas were then used to estimate the total bycatch; these ratios were considered the most appropriate variable for extrapolation. Stratification was based on the fishing mode (free school vs. floating object), season (quarters) and spatial areas. The annual average bycatch was estimated at about 6400 t, corresponding to a mean annual value of 80.8 t per 1000 t of tuna landed or 7.5% of the total catch. Tunas represent 83% (67.2 t/1000 t) of the total bycatch, followed by other bony fishes (10%, 7.8 t/1000 t), billfishes (5%, 4.0 t/1000 t), sharks (1%, 0.9 t/1000 t) and rays (1%, 0.9 t/1000 t). Based on estimates of the annual bycatch, 16% was kept on board and sold in local markets.
Mots-Clés: atlantic Ocean; Bycatch; discards; Purse seining; Tuna fisheries
|
Arrizabalaga, H., Dufour, F., Kell, L., Merino, G., Ibaibarriaga, L., Chust, G., et al. (2015). Global habitat preferences of commercially valuable tuna. Deep Sea Research Part II: Topical Studies in Oceanography, 113, 102–112.
Résumé: In spite of its pivotal role in future implementations of the Ecosystem Approach to Fisheries Management, current knowledge about tuna habitat preferences remains fragmented and heterogeneous, because it relies mainly on regional or local studies that have used a variety of approaches making them difficult to combine. Therefore in this study we analyse data from six tuna species in the Pacific, Atlantic and Indian Oceans in order to provide a global, comparative perspective of habitat preferences. These data are longline catch per unit effort from 1958 to2007 for albacore, Atlantic bluefin, southern bluefin, bigeye, yellowfin and skipjack tunas. Both quotient analysis and Generalized Additive Models were used to determine habitat preference with respect to eight biotic and abiotic variables. Results confirmed that, compared to temperate tunas, tropical tunas prefer warm, anoxic, stratified waters. Atlantic and southern bluefin tuna prefer higher concentrations of chlorophyll than the rest. The two species also tolerate most extreme sea surface height anomalies and highest mixed layer depths. In general, Atlantic bluefin tuna tolerates the widest range of environmental conditions. An assessment of the most important variables determining fish habitat is also provided.
|
Bodin, N., Chassot, E., Sardenne, F., Zudaire, I., Grande, M., Dhurmeea, Z., et al. (2018). Ecological data for western Indian Ocean tuna. Ecology, 99(5), 1245.
Résumé: Tuna are marine apex predators that inhabit the tropical and sub-tropical waters of the Indian Ocean where they support socially and economically important fisheries. Key component of pelagic communities, tuna are bioindicator species of anthropogenic and climate-induced changes through modifications of the structure and related energy-flow of food webs and ecosystems. The IndianEcoTuna dataset provides a panel of ecological tracers measured in four soft tissues (white muscle, red muscle, liver, gonads) from 1,364 individuals of four species, i.e., the albacore (ALB, Thunnus alalunga), the bigeye (BET, T. obesus), the skipjack (SKJ, Katsuwomus pelamis), and the yellowfin (YFT, T. albacares), collected throughout the western Indian Ocean from 2009 to 2015. Sampling was carried out during routine monitoring programs, at sea by observers onboard professional vessels or at landing. For each record, the type of fishing gear, the conservation mode, as well as the fishing date and catch location are provided. Individuals were sampled to span a wide range of body sizes: 565 ALB with fork length from 58 to 118 cm, 155 BET from 29.5 to 173 cm, 304 SKJ from 30 to 74 cm, and 340 YFT from 29 to 171.5 cm. The IndianEcoTuna dataset combines: (1) 9,512 records of carbon and nitrogen stable isotopes (percent element weights, δ13C and δ15N values) in 1,185 fish, (2) 887 concentrations of total proteins in 242 fish, (3) 8,356 concentrations of total lipids and three lipid classes (triacylglycerols TAG; phospholipids PL; sterols ST) in 695 fish, and (4) 1,150 and 1,033 profiles of neutral and polar fatty acids in 397 and 342 fish, respectively. Information on sex and weights of the whole fish, gonads, liver and stomach is provided. Because of the essential trophic role and wide-ranging of tuna in marine systems, and the large panel of tropho-energetic tracers and derived-key quantitative parameters provided (e.g., niche width, trophic position, condition indices), the IndianEcoTuna dataset should be of high interest for global and regional research on marine trophic ecology and food web analysis, as well as on the impacts of anthropogenic changes on Indian Ocean marine ecosystems. There are no copyright restrictions for research and/or teaching purposes. Usage of the dataset must include citation of this Data Paper.
|
Bodin, N., Lesperance, D., Albert, R., Hollanda, S., Michaud, P., Degroote, M., et al. (2017). Trace elements in oceanic pelagic communities in the western Indian Ocean. Chemosphere, 174, 354–362.
Résumé: The mineral composition of target and non-target pelagic fish caught by purse-seiners and longliners in the western-central Indian Ocean was determined. From the 10 essential elements analysed, selenium and zinc showed the highest concentrations in swordfish and blue marlin while Indian mackerel appeared as a good source of copper, iron and chrome. All catch had levels of lead and cadmium, two toxic elements, below the maximum sanitary limits. Although some concerns were raised regarding mercury concentrations in the largest species (wahoo, swordfish and blue marlin), molar ratios of mercury and selenium indicate that all oceanic pelagic fish from the western-central Indian Ocean are safe for human consumption. This study also gives insights on the relationships between the levels of essential and toxic elements in fish muscle and the size, trophic position and diet sources of the studied pelagic species. (C) 2017 Elsevier Ltd. All rights reserved.
|
Kaplan, D., Chassot, E., Amande, J. M., Dueri, S., Demarcq, H., Dagorn, L., et al. (2014). Spatial management of Indian Ocean tropical tuna fisheries: potential and perspectives. Ices Journal of Marine Science, 71(7), 1728–1749.
Résumé: Effective use of spatial management in the pelagic realm presents special challenges due to high fish and fisher mobility, limited knowledge and significant governance challenges. The tropical Indian Ocean provides an ideal case study for testing our ability to apply existing data sources to assessing impacts of spatial management on tuna fisheries because of several recent controversial spatial closures. We review the scientific underpinnings of pelagic MPA effects, spatio-temporal patterns of Indian Ocean tuna catch, by catch and fish movements, and the consequences of these for the efficacy of spatial management for Indian Ocean tropical tuna fisheries. The tropical Indian Ocean is characterized by strong environmental fluctuations, regular seasonal variability in catch, large observed tuna displacement distances, relatively uniform catch-per-unit-effort and bycatch rates over space, and high fisher mobility, all of which suggest significant variability and movement in tropical tuna fisheries that are simply not well adapted to static spatial closures. One possible exception to this overall conclusion would be a large time/area closure east of Somalia. If closed for a significant fraction of the year it could reduce purse-seine bycatch and juvenile tuna catch. Dynamic closures following fish migratory patterns are possible, but more focused information on fish movements will be needed for effective implementation. Fortunately, several recent improvements in conventional fishery management and reporting will likely enhance our ability to evaluate spatial and non-spatial management options in the near future, particularly as pertaining to bycatch species.
|